Dynamic Economic/Environmental Dispatch Problem Considering Prohibited Operating Zones

  • A. Torchani College of Engineering, University of Hail, Saudi Arabia | University of Tunis, ENSIT, LISIER Laboratory, Tunisia
  • A. Boudjemline College of Engineering, University of Hail, Saudi Arabia
  • H. Gasmi College of Engineering, University of Hail, Saudi Arabia | University of Tunis El-Manar, ENIT, Tunisia
  • Y. Bouazzi College of Engineering, University of Hail, Saudi Arabia and University of Tunis El Manar, ENIT, Tunisia
  • T. Guesmi College of Engineering, University of Hail, Saudi Arabia and University of Sfax, ENIS, Tunisia
Keywords: dynamic environmental/economic dispatch, prohibited operating zones, multi-objective optimization, non-dominated sorting genetic algorithm


Along with economic dispatch, emission dispatch has become a key problem under market conditions. Thus, the combination of the above problems in one problem called economic emission dispatch (EED) problem became inevitable. However, due to the dynamic nature of today’s network loads, it is required to schedule the thermal unit outputs in real-time according to the variation of power demands during a certain time period. Within this context, this paper presents an elitist technique, the second version of the non-dominated sorting genetic algorithm (NSAGII) for solving the dynamic economic emission dispatch (DEED) problem. Several equality and inequality constraints, such as valve point loading effects, ramp rate limits and prohibited operating zones (POZ), are taken into account. Therefore, the DEED problem is considered as a non-convex optimization problem with multiple local minima with higher-order non-linearities and discontinuities. A fuzzy-based membership function value assignment method is suggested to provide the best compromise solution from the Pareto front. The effectiveness of the proposed approach is verified on the standard power system with ten thermal units.


Download data is not yet available.


F. Milano, “An open source power system analysis toolbox”, IEEE Transactions on Power Systems, Vol. 20, No. 3, pp. 1199-1206, 2005

R. D. Zimmerman, C. E. M. Sanchez, R. J. Thomas, “Matpower steady-state operations, planning and analysis tools for power systems research and education”, IEEE Transactions on Power Systems, Vol. 26, No. 1, pp. 12-19, 2011

S. Boudab, N. Golea, “Combined economic-emission dispatch problem: Dynamic neural networks solution approach”, Journal of Renewable and Sustainable Energy, Vol. 9, No. 3, Article ID 035503, 2017

M. Basu, “Economic environmental dispatch using multi-objective differential evolution”, Applied Soft Computing, Vol. 11, No. 2, pp. 2845-2853, 2011

M. A. Abido, “Multiobjective evolutionary algorithms for electric power dispatch problem”, IEEE Transactions on Evolutionary Computation, Vol. 10, No. 3, pp. 315-329, 2006

S. Sivasubramani, K. S. Swarup, “Environmental/economic dispatch using multi-objective harmony search algorithm”, Electric Power Systems Research, Vol. 81, No. 9, pp. 1778-1785, 2011

G. C. Liao, “Solve environmental economic dispatch of smart microgrid containing distributed generation system-using chaotic quantum genetic algorithm”, International Journal of Electrical Power & Energy Systems, Vol. 43, No. 1, pp. 779-787, 2012

B. Hadji, B. Mahdad, K. Srairi, N. Mancer, “Multi-objective economic emission dispatch solution using dance bee colony with dynamic step size”, Energy Procedia, Vol. 74, pp. 65-76, 2015

K. Tlijani, T. Guesmi, H. H. Abdallah, “Extended dynamic economic environmental dispatch using multi-objective particle swarm optimization”, International Journal on Electrical Engineering and Informatics, Vol. 8, No. 1, pp. 117-131, 2016

H. Ma, Z. Yang, P. You, M. Fei, “Multi-objective biogeography-based optimization for dynamic economic emission load dispatch considering plug-in electric vehicles charging”, Energy, Vol. 135, pp. 101–111, 2017

S. Hemamalini, S. P. Simon, “Dynamic economic dispatch using artificial bee colony algorithm for units with valve-point effect”, European Transactions on Electrical Power, Vol. 21, No. 1, pp. 70-81, 2011

C. K. Panigrahi, P. K. Chattopadhyay, R. N. Chakrabarti, M. Basu, “Simulated annealing technique for dynamic economic dispatch”, Electric Power Components and Systems, Vol. 34, No. 5, pp. 577-586, 2006

R. Balamurugan, S. Subramanian, “An improved differential evolution based dynamic economic dispatch with nonsmooth fuel cost function”, Journal of Electrical Systems, Vol. 3, No. 3, pp. 151-161, 2007

N. Pandit, A. Tripathi, S. Tapaswi, M. Pandit, “An improved bacterial foraging algorithm for combined static/dynamic environmental economic dispatch”, Applied Soft Computing, Vol. 12, No. 11, pp. 3500-3513, 2012

H. Rezaie, M. H. K. Rahbar, B. Vahidi, H. Rastegar, “Solution of combined economic and emission dispatch problem using anovel chaotic improved harmony search algorithm”, Journal of Computational Design and Engineering, Vol. 6, No. 3, pp. 447-467, 2019

G. Irisarri, L. M. Kimball, K. A. Clements, A. Bagchi, P. W. Davis, “Economic dispatch with network and ramping constraints via interior point methods”, IEEE Transactions on Power Systems, Vol. 13, No. 1, pp. 236-242, 1998

S. Ganjefar, M. Tofighi, “Dynamic economic dispatch solution using an improved genetic algorithm with non-stationary penalty functions”, European Transactions on Electrical Power, Vol. 21, No. 3, pp. 1480–1492, 2011

W. M. Lin, F. S. Cheng, M. T. Tsay, “An improved tabu search for economic dispatch with multiple minima”, IEEE Transactions on Power Systems, Vol. 17, No. 1, pp. 108-112, 2002

K. Mason, J. Duggan, E. Howley, “Multi-objective dynamic economic emission dispatch using particle swarm optimisation variants”, Neurocomputing, Vol. 270, pp. 188–197, 2017

M. Basu, “Particle swarm optimization based goal-attainment method for dynamic economic emission dispatch”, Electric Power Components and Systems, Vol. 34, No. 9, pp. 1015-1025, 2006

K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II”, IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, pp. 182-197, 2002

M. Z. Jahromi, M. M. H. Bioki, M. Rashidinejad, R. Fadaeinedjad, “Solution to the unit commitment problem using an artificial neural network”, Turkish Journal of Electrical Engineering and Computer Sciences, Vol. 21, pp. 198-212, 2013


Abstract Views: 240
PDF Downloads: 137

Metrics Information
Bookmark and Share