On Polymers Nanocomposites: Electrical Treeing, Breakdown models and Related Simulations

Authors

  • G. Melissinos Department of Electrical & Computer Engineering, Democritus University of Thrace, Greece
  • M. Danikas Department of Electrical & Computer Engineering, Democritus University of Thrace, Greece
Volume: 8 | Issue: 2 | Pages: 2627-2632 | April 2018 | https://doi.org/10.48084/etasr.1726

Abstract

This paper deals with polymer nanocomposites and their related breakdown mechanisms. Polymer nanocomposites seem to be a very promising alternative to conventional polymers regarding high voltage applications. Some developed breakdown models are discussed as well as the mechanism of treeing in such materials. Treeing simulation results are presented.

Keywords:

polymer, nanocomposites, insulation, treeeing, breakdown.

Downloads

Download data is not yet available.

References

G. C. Stone, E. A. Boulter, I. Culbert, H. Dhirani, “Historical development of insulation materials and systems”, in: Electrical insulation for Rotating Machines Design, Evaluation, Aging, Testing, and Repair, 1st Edition, Editor: S. V. Kartalopoulos, Wiley-IEEE Press: Piscataway , NJ, USA, pp. 73–94, 2004

T. J. Lewis, “Nanometric Dielectrics”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 1, pp. 812–825, 1994 DOI: https://doi.org/10.1109/94.326653

J. K. Nelson, J. C. Fothergill, “Internal charge behaviour in nanocomposites”, Nanotechnology, Vol. 15, pp. 586-595, 2004 DOI: https://doi.org/10.1088/0957-4484/15/5/032

T. Tanaka, G. C. Montanari, R. Muelhaupt, “Polymer nanocomposites as dielectrics and electrical insulation: Perspectives for processing technologies, material characterization and future applications”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 11, pp. 763-784, 2004 DOI: https://doi.org/10.1109/TDEI.2004.1349782

Y. Cao, P. C. Irwin, K. Younsi, “The future of nanodielectrics in the electrical power industry”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 11, pp. 797–807, 2004 DOI: https://doi.org/10.1109/TDEI.2004.1349785

M. F. Frechette, M. L. Trudeau, H. D. Alamdar, S. Boily, “Introductory remarks on nanodielectrics”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 11, pp. 808–818, 2004 DOI: https://doi.org/10.1109/TDEI.2004.1349786

I. Plesa, P. V. Notingher, S. Schlögl, Ch. Sumereder, M. Muhr, “Properties of polymer composites used in high-voltage applications”, Polymers, Vol. 8, pp. 1-63, 2016 DOI: https://doi.org/10.3390/polym8050173

R. Y. Hong, Q. Chen, “Dispersion of inorganic nanoparticles in polymer matrices: challenges and solutions”, in: Organic-Inorganic Hybrid Nanomaterials, Eds. S. Kalia and Y. Haldorai, Springer International Publishing: Berlin, Heidelberg, Germany, pp. 1–38, 2015

A. von Hippel, “Electric breakdown of solid and liquid insulators”, Journal of Applied Physics, Vol. 8, pp. 815-832, 1937 DOI: https://doi.org/10.1063/1.1710258

Y. Sun, S. A. Boggs, R. Ramprasad, “The intrinsic electrical breakdown strength of insulators from first principles”, Applied Physics Letters, Vol. 101, pp. 1329061-1329065, 2012 DOI: https://doi.org/10.1063/1.4755841

A. Huzayyin, S. Boggs, R. Ramprasad, “Depths of chemical impurity states in polyethylene the big picture from first principles”, in : IEEE International Conference on Solid Dielectrics, Bologna , Italy, Vol. 1, pp. 15-18, 30th June – 4th July, 2013 DOI: https://doi.org/10.1109/ICSD.2013.6619738

D. Ma, T. A. Huneger, R. W. Siegel, A. Christerson, E. Martensson, C. Onneby, L. S. Schadler, “Influence of nanoparticle surface modification on the electrical behavior of polyethylene nanocomposites”, Nanotechnology, Vol. 16, pp. 724–731, 2005 DOI: https://doi.org/10.1088/0957-4484/16/6/016

B. Han, X. Wang, Z. Sun, J. Yang, Q. Lei, “Space charge suppression induced by deep traps in polyethylene/zeolite nanocomposite”, Applied Physics Letters, Vol. 102, pp. 012902-1 – 012902-4, 2013 DOI: https://doi.org/10.1063/1.4773918

Y. Tanaka, N. Ohnuma, K. Katsunami, Y. Ohki, “Effects of crystallinity and electron mean-free-path on dielectric strength of low-density polyethylene”, IEEE Transactions on Electrical Insulation, Vol. 26, No. 2, pp. 258–265, 1991 DOI: https://doi.org/10.1109/14.78326

Z. H. Fan, N. Yoshimura, “The influence of crystalline morphology on the growth of water trees in PE”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 5, No. 3, pp. 849-858, 1996 DOI: https://doi.org/10.1109/94.556571

T. Tanaka, ‘Interface properties and surface erosion resistance’, pp. 229-258, in: Dielectric Polymer Nanocomposites, Editor J. K. Nelson, Eds. Springer, Heidelberg, Germany, 2010 DOI: https://doi.org/10.1007/978-1-4419-1591-7_8

J. Claude, Y. Lu, Q. Wang, “Effect of molecular weight on the dielectric breakdown strength of ferroelectric poly(vinylidene fluoride chlorotrifluoroethylene)s, Applied Physics Letters, Vol. 91, pp. 2129041–212904-3, 2007 DOI: https://doi.org/10.1063/1.2816327

K. Stark, C. Garton, “Electric strength of irradiated polythene”, Nature, Vol. 176, pp. 1225–1226, 1955 DOI: https://doi.org/10.1038/1761225a0

M. Nagao, T. Kimura, Y. Mizuno, M. Kosaki, M. Ieda, “Detection of Joule heating before dielectric breakdown in polyethylene films”, IEEE Transactions on Electrical Insulation, Vol. 25, No. 4, pp. 715-722, 1990 DOI: https://doi.org/10.1109/14.57095

G. Kickelbick, “Introduction to hybrid materials”, in: Hybrid Materials, Synthesis, Characterization and Applications, Editor G. Kickelbick, Eds. Wiley VCH Verlag GmbH& Co. KGaA, Weinheim, Germany, 2007

L. A. Dissado, J. C. Fothergill, “Electrical Degradation and Breakdown in Polymers”, Eds. Peter Peregrinus Ltd., London, UK, 1992 DOI: https://doi.org/10.1049/PBED009E

M. Roy, J. K. Nelson, R. K. MacCrone, L. S. Schadler, C. W. Reed, R. Keefe, W. Zenger, “Polymer nanocomposite dielectrics - The role of the interface”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 12, No. 4, pp. 629-643, 2005 DOI: https://doi.org/10.1109/TDEI.2005.1511089

N. Fuse, M. Kozako, T. Tanaka, S. Murase, Y. Ohki, “Possible mechanism of superior partial discharge resistance of polyamide nanocomposites”, Proceedings of Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp. 322-325, 2004

T. Desai, P. Keblinski, S. Kumar, “Molecular dynamics simulations of polymer transport in nanocomposites”, The Journal of Chemical Physics, Vol. 122, 134910-1–134910-8, 2005 DOI: https://doi.org/10.1063/1.1874852

H. Lu, S. Nutt, “Restricted relaxation in polymer nanocomposites near the glass transition”, Macromolecules, Vol. 36, pp. 4010-4016, 2003 DOI: https://doi.org/10.1021/ma034049b

T. D. Fornes, D. R. Paul, “Crystallization behavior of nylon 6 nanocomposites”, Polymer, Vol. 44, No. 14, pp. 3945-3961, 2003 DOI: https://doi.org/10.1016/S0032-3861(03)00344-6

T. J. Lewis, “A model for nano-composite dielectrics under electrical stress”, Proceedings of 2007 IEEE International Conference on Solid Dielectrics, pp.11 -14, 2007 DOI: https://doi.org/10.1109/ICSD.2007.4290740

G. Tsagaropoulos, A. Eisenberg, “Dynamic mechanical study of the factors affecting the two glass transition behavior of filled polymers. Similarities and differences with random ionomers. Macromolecules, Vol. 28, No. 18, pp. 6067-6077, 1995 DOI: https://doi.org/10.1021/ma00122a011

J. K. Nelson, Y. Hu, “The impact of nanocomposite formulations on electrical voltage endurance”, Proceedings of International Conference on Solid Dielectrics (ICSD), pp. 832-835, 2004

Y. Yamano, “Roles of polycyclic compounds in increasing breakdown strength of LDPE film”, IEEE Transactions on Dielectrics and Electrical Insulation, pp. 774-781, 2006 DOI: https://doi.org/10.1109/TDEI.2006.1667735

R. C. Smith, C. Liang, M. Landry, J. K. Nelson, L. S.Schadler, “The mechanisms leading to the useful electrical properties of polymer nanodielectrics”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 15, No. 1, pp. 187-196, 2008 DOI: https://doi.org/10.1109/T-DEI.2008.4446750

M. Roy, J. K. Nelson, R. K. MacCrone, L. S. Schadler, “Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics”, Journal of Materials Science, Vol. 42, 3789-3799, 2007 DOI: https://doi.org/10.1007/s10853-006-0413-0

M. Nagao, S. Watanabe, Y. Murakami, Y. Murata, “Water tree retardation of MgO/LDPE and MgO/XLPE nanocomposites”, Proceedings of International Symposium on Electrical Insulating Materials (ISEIM 2008), pp. 483-486, Mie, Japan, September 7-11, 2008 DOI: https://doi.org/10.1109/ISEIM.2008.4664592

X. Dou, X. Liu, Y. Zhang, H. Feng, J.-F. Chen, S. Du, “Improved dielectric strength of barium titanate-polyvinylidene fluoride nanocomposite”, Applied Physics Letters, Vol. 95, 132904-1–132904-3, 2009 DOI: https://doi.org/10.1063/1.3242004

K. Yu, Y. Niu, F. Xiang, Y. Zhou, Y. Bai, H. Wang, “Enhanced electric strength and high energy density of barium titanite filled polymer nanocomposites”, Journal of Applied Physics, Vol. 114, 174107-1–174107-5, 2013 DOI: https://doi.org/10.1063/1.4829671

T. P. Schuman, S. Siddabattuni, O. Cox, F. Dogan, “Improved dielectric breakdown strength of covalently bonded interface polymer–particle nanocomposites”, Composite Interfaces, Vol. 17, No. 8, pp. 719-731, 2010 DOI: https://doi.org/10.1163/092764410X495315

S. Siddabattuni, T. P. Schuman, F. Dogan, “Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control”, Material Science & Engineering B, Vol. 176, No. 18, pp. 1422-1429, 2011 DOI: https://doi.org/10.1016/j.mseb.2011.07.025

M. G. Danikas, R. Sarathi, “Interfaces in high voltage engineering: A most important question for conventional solid insulating materials as well as for nanocomposite polymers”, Funktechnikplus#Journal, Vol. 1, No. 4, pp. 7-31, 2014

M. G. Danikas, A. Bairaktari, R. Sarathi, A. B. B. Abd. Ghani, “A review of two nanocomposite insulating materials models: Lewis’ contribution in the development of the models, their differences, their similarities and future challenges”, Engineering, Technololgy & Applied Science Research, Vol. 4, No. 3, pp. 636-643, 2014 DOI: https://doi.org/10.48084/etasr.441

L. Pietronero, H. Wiesmann, “Stochastic model for dielectric breakdown”, Journal of Statistical Physics, Vol. 36, nos. 5/6, pp. 909-916, 1984 DOI: https://doi.org/10.1007/BF01012949

L. Niemeyer, L. Pietronero, H. J. Wiesmann, "Fractal dimension of dielectric breakdown", Physical Review Letters, Vol. 52, No. 12, pp. 1033-1036,1984 DOI: https://doi.org/10.1103/PhysRevLett.52.1033

H. J. Wiesmann, H. R. Zeller, “A fractal model of dielectric breakdown and prebreakdown in solid dielectrics”, Journal of Applied Physics, Vol. 60, No. 5, pp. 1770-1773, 1986 DOI: https://doi.org/10.1063/1.337219

S. J. Dodd, “A deterministic model for the growth of non-conducting electrical tree structures”, Journal of Physics D: Applied Physics, Vol. 36, No. 2, pp. 129-141, 2003 DOI: https://doi.org/10.1088/0022-3727/36/2/309

M. G. Danikas, I. Karafyllidis, A. Thanailakis, A. M. Bruning, “Simulation of electrical tree growth in solid dielectrics containing voids of arbitrary shape”, Modelling and Simulation in Materials Science and Engineering, Vol. 4, No. 6, pp. 535-552, 1996 DOI: https://doi.org/10.1088/0965-0393/4/6/001

G. E. Vardakis, M. G. Danikas, I. Karafyllidis, “Simulation of space-charge effects in electrical tree propagation using cellular automata”, Materials Letters, Vol. 56, No. 4, pp. 404-409, 2002 DOI: https://doi.org/10.1016/S0167-577X(02)00512-8

L. A. Dissado, P. J. J. Sweeney, “Physical model for breakdown structures in solid dielectrics”, Physical Review B., Vol. 48, No. 22, pp. 16261-16268, 1993 DOI: https://doi.org/10.1103/PhysRevB.48.16261

M. D. Noskov, A. S. Malinovski, M. Sack, A. J. Schwab, “Self-consistent modeling of electrical tree propagation and PD activity”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 7, No. 6, pp. 725-733, 2000 DOI: https://doi.org/10.1109/94.891982

D. Pitsa. “Electrical Breakdown Phenomena and their modeling in nanocomposites”, Doctoral Thesis, Department of Electrical and Computer Engineering, School of Engineering, Democritus University of Thrace , 2013 (in Greek)

B. J. Cox, N. Thamwattana, J. M. Hill, “Electric field-induced force between two identical uncharged spheres”, Applied Physics Letters, Vol. 88, pp. 152903-1–152903-3, 2006 DOI: https://doi.org/10.1063/1.2185607

G. Chen, C. Zhang, G. Stevens, “Space charge in LLDPE loaded with nanoparticles”, Proceedings of Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), pp. 275–278, 2007 DOI: https://doi.org/10.1109/CEIDP.2007.4451554

A. Hajiyiannis, G. Chen, C. Zhang, G. Stevens, “Space charge formation in epoxy resin including various nanofillers”, Proceedings of Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), pp. 714- 717, 2008 DOI: https://doi.org/10.1109/CEIDP.2008.4772898

T. Iizuka, T. Tanaka, “Effects of nano silica filler size on treeing breakdown lifetimeof epoxy nanocomposites”, Proceedings of International Conference on Properties and Applications of Dielectric Materials (ICPADM), pp. 733-736, 2009 DOI: https://doi.org/10.1109/ICPADM.2009.5252324

Downloads

How to Cite

[1]
Melissinos, G. and Danikas, M. 2018. On Polymers Nanocomposites: Electrical Treeing, Breakdown models and Related Simulations. Engineering, Technology & Applied Science Research. 8, 2 (Apr. 2018), 2627–2632. DOI:https://doi.org/10.48084/etasr.1726.

Metrics

Abstract Views: 1358
PDF Downloads: 636

Metrics Information

Most read articles by the same author(s)

1 2 3 > >>