Dynamic Modeling and Simulation of a PEM Fuel Cell (PEMFC) during an Automotive Vehicle’s Driving Cycle
Abstract
Polymer Electrolyte Membrane Fuel Cells (PEMFCs) are the most appropriate type of fuel cells for application in vehicles due to their low operational temperature and high-power density. In this paper, a zero-dimensional, steady state thermodynamic modeling for an automotive 90kW PEMFC system has been built up in order to investigate the effects of operating parameters such as vehicle acceleration and operating pressure on the size of the system elements, heat and water system constitution, fuel consumption, and efficiency. A dynamic model was formed for the fuel cell power system in MATLAB. Power output and power losses of the system were investigated at 3atm operation pressures.
Keywords:
PEM, thermal analysis, MATLAB, dynamic modeling, fuel cell systemDownloads
References
M. Hosseini, A. H. Shamekhi, A. Yazdani, “Modeling and Simulation of a PEM Fuel Cell (PEMFC) Used in Vehicles”, SAE International, Vol. 1, No. 1233, 2012 DOI: https://doi.org/10.4271/2012-01-1233
A. Akroot, “Modelling Of Thermal and Water Management in Automotive Polymer Electrolyte Membrane Fuel Cell Systems”, Hacettepe University, 2014.
T.J.P. Freire, E.R. Gonzalez, “Effect of membrane characteristics and humidification conditions on the impedance response of polymer electrolyte fuel cells”, Journal Of Electrochemical., vol. 503, pp. 57-68, 2001. DOI: https://doi.org/10.1016/S0022-0728(01)00364-3
M. Amirinejad, S. Rowshanzamir, M. Eikani, “Effects of operating parameters on performance of a proton exchange membrane fuel cell”, Journal Of Power Sources, vol. 161 , pp. 872–875, 2006. DOI: https://doi.org/10.1016/j.jpowsour.2006.04.144
W. Yuan, Y. Tang, M. Pan, Z. Li, B. Tang, Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance, Journal Of Renewable Energy, vol: 35, pp. 656–666, 2010. DOI: https://doi.org/10.1016/j.renene.2009.08.017
G. Guvelioglu, H. Stenger, “Flow rate and humidification effects on a PEM fuel cell performance and operation”, Journal of Power Sources, vol: 163, pp. 882–891, 2007. DOI: https://doi.org/10.1016/j.jpowsour.2006.09.052
W.M. Yan, F. Chen, W. H. Yi, C.Y. Soong, H.S. Chu, “Analysis of thermal and water management with temperature- dependent diffusion effects in membrane of proton exchange membrane fuel cells”, Journal Of Power Sources, vol:129, pp. 127–137, 2004. DOI: https://doi.org/10.1016/j.jpowsour.2003.11.028
S.O. Mert, I. Dincer, Z. Ozcelik, “Performance investigation of a transportation PEM fuel cell system”, International Journal Of Hydrogen Energy, Vol:37, pp. 622-633, 2012. DOI: https://doi.org/10.1016/j.ijhydene.2011.09.021
E. Hosseinzadeh, M. Rokni, A. Rabbani, H. Mortensen, “Thermal and water management of low temperature Proton Exchange Membrane Fuel Cell in fork- lift truck power system”, Journal of Applied Energy, Vol: 104, pp. 434–444, 2013.
R.M. Moore, K.H. Hauer, D. Friedman, J. Cunningham, P. Badrinarayanan, S. Ramaswamy, A. Eggert, “A Dynamic Simulation Tool for Hydrogen FC Vehicles” Journal of Power Sources, vol: 141, pp. 272-285, 2005. DOI: https://doi.org/10.1016/j.jpowsour.2004.05.063
D. Coralla, D.E. Foster, T. Kobayashi, N. Vaughan, “Encyclopedia of Automotive Engineering,” John Wiley & Sons, Ltd., New York, 2014.
E. Hosseinzadeh, M. Rokni, A. Rabbani, H. H. Mortensen, “Thermal and water management of low temperature Proton Exchange Membrane Fuel Cell in fork-lift truck power system”, Applied Energy, Vol. 104, pp. 434-444, 2013. DOI: https://doi.org/10.1016/j.apenergy.2012.11.048
J. Larminie, A. Dicks, “Fuel Cell Systems Explained”, 2nd Ed., John Wiley & Sons, Ltd., New York, 2003. DOI: https://doi.org/10.1002/9781118878330
R. O’Hayre, S.W. Cha, W. Colella, F.B. Prinz, “Fuel Cell Fundamentals”, John Wiley and Sons ,New York, 2006.
F. Barbir, “PEM Fuel Cell Theory and Practice”, Elsevier, USA, 2005.
C. S. Spiegel, “Designing & building fuel cells”. 1st ed., New York; 2007.
Downloads
How to Cite
License
Copyright (c) 2020 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.