A Novel High-Gain Quad-Band Antenna with AMC Metasurface for Satellite Positioning Systems

A. Bousselmi, A. Gharsallah, T. P. Vuong

Abstract


In this paper, a new design single feed multi-band antenna is presented. The proposed antenna is designed to operate at the 1.278GHz, 2.8GHz, 5.7GHz, and 10GHz frequency bands which cover the Galileo satellite positioning system (1.278GHz), WLAN (2.8GHz), WIMAX (5.7GHz) and the radar applications (10GHz), respectively. The antenna has a compact size, it is printed on an FR4 substrate of dimensions (60mm×27.5mm×1.67mm) placed on a ground plane of 60mm×17.5mm×0.035mm dimensions. To improve the radiation performance of the proposed antenna, an artificial magnetic conductor (AMC) was used as a reflector plane with dimensions of 13.5mm × 13.5mm × 1mm. The simulated and measured results are in good agreement and show the significant improvement of the gain value of the multiband antenna with AMC which is a required propriety for novel wireless communications systems.


Keywords


antenna design; multiband antenna; Galileo; AMC metasurface

Full Text:

PDF

References


T. Y. Wu, K. L Wong., “On the impedance bandwidth of a planar inverted-F antenna for mobile handsets”, Microwave and Optical Technology Letters, Vol. 32, No. 4, pp. 249-251, 2002

L. M. Mortensen, “Growth responses of some greenhouse plants to environment. III. Design and function of a growth chamber prototype”, Scientia Horticulturae, Vol. 16, No. 1, pp. 57-63, 1982

M. C. Huynh, W. Stutzman, “Ground plane effects on planar inverted-F antenna (PIFA) performance”, IEE Proceedings - Microwaves, Antennas and Propagation, Vol. 150, No. 4, pp. 209-213, 2003

C. J. Hegarty, E Chatre, “Evolution of the global navigation satellite systems (GNSS)”, Proceedings of the IEEE, Vol. 96, No. 12, pp. 1902–1917, 2008

P. Ciais, R Staraj, G .Kossiavas, C. Luxey, “Design of an internal quad-band antenna for mobile phones”, IEEE Microwave and Wireless Components Letters, Vol. 14, No. 4, pp. 148–150, 2004

R. L. Fante, J. J .Vacarro, “Cancellation of jammers and jammers multipath in a GPS receiver”, IEEE Aerospace and Electronic Systems Magazine, Vol. 13, No.11, pp. 25–28, 1998

K. C. R. Gupta, R. Garg, I. Bahl, P. Bhartia, Microstrip Lines and Slotlines, Artech House, 1996

X. L. Sun, S. W. Cheung, T. I. Yuk, “Dual-Band Monopole Antenna With Frequency Tunable Feature for WiMAX Applications”, IEEE Antennas and Wireless Propagation Letters, Vol. 12, pp. 100-103, 2013

W. Hu, Y. Z. Yin, P. Fei, X. Yang, “Compact Triband Square-Slot Antenna With Symmetrical L-Strips for WLAN/WiMAX”, IEEE Antennas and Wireless Propagation Letters, Vol. 10, pp. 462-465, 2011

M. Bod, H. R. Hassani, M. M. Samadi Taheri, “Compact UWB printed slot antenna with extra bluetooth, GSM, and GPS bands”, IEEE Antennas and Wireless Propagation Letters, Vol. 11, pp. 531-534, 2012

V. A. A. Filho, A. L. P. S. Campos, “Performance optimization of microstrip antenna array using frequency selective surfaces”, Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 13, No. 1, pp. 31–46, 2014

K. Chen, Z. Yang, Y. Feng, B. Zhu, J. Zhao, T. Jiang, “Improving microwave antenna gain and bandwidth with phase compensation metasurface”, AIP Advances, Vol. 5, No. 6, Article ID 067152, 2015

H. Oraizi, B. Rezaei, “Improvement of antenna radiation efficiency by the suppression of surface waves”, Journal of Electromagnetic Analysis and Applications, Vol. 3, pp. 79-83, 2011

A. P. Saghati, M. Azarmanesh, R. Zaker, “A novel switchable singleand multifrequency triple-slot antenna for 2.4-GHz bluetooth, 3.5-GHz WiMax, and 5.8-GHz WLAN”, IEEE Antennas and Wireless Propagation Letters, Vol. 9, pp. 534-537, 2010

M. Bod, H. R. Hassani, M. M. Samadi Taheri, “Compact UWB printed slot antenna with extra bluetooth, GSM, and GPS bands IEEE Antennas and Wireless Propagation Letters, Vol. 11, pp. 531-534, 2012

Y. F. Cao, S. W. Cheung, T. I. Yuk, “A Multi-band Slot Antenna for GPS/WiMAX/WLAN Systems”, IEEE Transactions on Antennas and Propagation, Vol. 63, No. 3, pp. 952-958, 2015




eISSN: 1792-8036     pISSN: 2241-4487