Forecasting Parameter Estimates: A Modeling Approach Using Exponential and Linear Regression

Authors

  • W. M. A. W. Ahmad School of Dental Sciences, Universiti Sains Malaysia, Malaysia
  • R. A. A. Rohim School of Dental Sciences, Universiti Sains Malaysia, Malaysia
  • N. H. Ismail School of Dental Sciences, Universiti Sains Malaysia, Malaysia
Volume: 8 | Issue: 4 | Pages: 3162-3167 | August 2018 | https://doi.org/10.48084/etasr.2150

Abstract

This paper supplies a calculation method for the parameter estimates of an exponential equation through SAS algorithm. The aim of this paper is to investigate the efficiency of the gained parameter estimates through the forecasting performance. The proposed calculation method can provide a very useful technique to develop an exponential equation with better accuracy performance. This research paper illustrates a sample of the data obtained from the established study, which characterize the proliferative capacity of mesenchymal stem cells. This paper also provides the specific algorithm for the parameter estimates.

Keywords:

exponential, SAS algorithm, parameter estimates

Downloads

Download data is not yet available.

References

N. R. Draper, H. Smith, Applied Regression Analysis, Wiley Eastern, 1998 DOI: https://doi.org/10.1002/9781118625590

R. J. Tallarida, R. B. Murray. Exponential growth,and decay, Manual of Pharmacologic Calculations, Springer, 1987 DOI: https://doi.org/10.1007/978-1-4612-4974-0

R. Tahmasbi, S. Rezaei, “A two-parameter lifetime distribution with decreasing failure rate”, Computational Statistics & Data Analysis,Vol. 52, No. 8, pp. 3889-390, 2008 DOI: https://doi.org/10.1016/j.csda.2007.12.002

A. Schneider, G. Hommel, M. Blettner, “Linear Regression Analysis”, Deutsches Arzteblatt International, Vol. 107, No. 44, pp. 776-82, 2010 DOI: https://doi.org/10.3238/arztebl.2010.0776

D. C. Montgomery, E. Peck, G. Vining, Introduction to linear regression analysis, 3rd Edition, John Wiley and Sons, 2003

R. Gupta, D. Kundu, “Generalized Exponential Distributions”, Australian and New Zealand Journal of Statistics, Vol. 41, No. 2, pp. 173-188, 1999 DOI: https://doi.org/10.1111/1467-842X.00072

K. Adamidis, S. Loukas, “A lifetime distribution with decreasing failure rate”, Statistics & Probability Letters, Vol. 39, No. 1, pp. 35-42,1998 DOI: https://doi.org/10.1016/S0167-7152(98)00012-1

D. Kus, “A new lifetime distribution distributions”, Computational Statistics and Data Analysis, Vol. 11, No. 9, pp. 4497-4509, 2007 DOI: https://doi.org/10.1016/j.csda.2006.07.017

F. Louzada-Neto, “Poly hazard regression models for lifetime data”, Biometric,Vol. 55, No. 4, pp. 1281-1285, 1999 DOI: https://doi.org/10.1111/j.0006-341X.1999.01281.x

J. U. Kreft, G. Booth, J. W. T. Wimpenny, “BacSim, a simulator for individual-based modeling of bacterial colony growth”, Microbiology, Vol. 144, No. 12, pp. 3275-3287, 1998 DOI: https://doi.org/10.1099/00221287-144-12-3275

Downloads

How to Cite

[1]
W. M. A. W. Ahmad, R. A. A. Rohim, and N. H. Ismail, “Forecasting Parameter Estimates: A Modeling Approach Using Exponential and Linear Regression”, Eng. Technol. Appl. Sci. Res., vol. 8, no. 4, pp. 3162–3167, Aug. 2018.

Metrics

Abstract Views: 382
PDF Downloads: 272

Metrics Information
Bookmark and Share

Most read articles by the same author(s)