Block Milne’s Implementation For Solving Fourth Order Ordinary Differential Equations

Authors

  • J. G. Oghonyon Department of Mathematics, Covenant University, Nigeria
  • S. A. Okunuga Department of Mathematics, University of Lagos, Akoka-Lagos, Nigeria
  • K. S. Eke Department of Mathematics, Covenant University, Nigeria
  • O. A. Odetunmibi Department of Mathematics, Covenant University, Ota, Nigeria

Abstract

Block predictor-corrector method for solving non-stiff ordinary differential equations (ODEs) started with Milne’s device. Milne’s device is an extension of the block predictor-corrector method providing further benefits and better results. This study considers Milne’s devise for solving fourth order ODEs. A combination of Newton’s backward difference interpolation polynomial and numerical integration method are applied and integrated at some selected grid points to formulate the block predictor-corrector method. Moreover, Milne’s devise advances the computational efficiency by applying the principal local truncation error (PLTE) of the block predictor-corrector method after establishing the order. The numerical results were exhibited to attest the functioning of Milne’s devise in solving fourth order ODEs. The complete results were obtained with the aid of Mathematica 9 kernel for Microsoft Windows. Numerical results showcase that Milne’s device is more effective than existent methods in terms of design new step size, determining the convergence criteria and maximizing errors at all examined convergence levels.

Keywords:

Milne’s device, predictor-corrector method, suitable step size, convergence criteria, maximum errors, principal local truncation error

Downloads

Download data is not yet available.

References

J. R. Dormand, Numerical Methods for Differential Equations, Approach. CRC Press, 1996

J. G. Oghonyon, S. A. Okunuga, S. A. Iyase, “Milne’s implementation on block predictor-corrector methods”, Journal of Applied Sciences, Vol. 16, No. 5, pp. 236-241, 2016 DOI: https://doi.org/10.3923/jas.2016.236.241

J. G. Oghonyon, S. A. Okunuga, N. A. Omoregbe, O. O. Agboola, “Adopting a variable step size approach in implementing implicit block multistep method for non-stiff ODEs”, Journal of Engineering and Applied Sciences, Vol. 10, No. 2, 174-180, 2015

O. Akinfenwa, S. N. Jator, N. M. Yao, “Continuous block backward differentiation formula for solving stiff ordinary differential equations”, Computers and Mathematics with Applications, Vol. 65, No. 7, pp. 996-1005, 2013 DOI: https://doi.org/10.1016/j.camwa.2012.03.111

M. K. Jain, S. R. K. Iyengar, R. K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International (P) Ltd., 2007

J. D. Lambert, Computational Methods inOrdinary Differential Equations, John Wiley and Sons, 1973

S. Mehrkanoon, Z. A. Majid, M. Suleiman, “A variable step implicit block multistep method for solving first-order ODEs”, Journal of Computational and Applied Mathematics, Vol. 233, No. 9, pp. 2387-2394, 2010 DOI: https://doi.org/10.1016/j.cam.2009.10.023

O. Adesanya, A. A. Momoh, A. M. Alkali, A. Tahir, “Five steps block method for the solution of fourth order ordinary differential equations”, International Journal of Engineering Research and Applications, Vol. 2, No. 5, pp. 991-998, 2012

D. O. Awoyemi, S. J. Kayode, L.O . Adoghe, “A five-step p-stable method for the numerical integration of third order ODEs”, American Journal of Computational Mathematics, Vol. 4, No. 3, pp. 119-126, 2014 DOI: https://doi.org/10.4236/ajcm.2014.43011

D. O. Awoyemi, S. J. Kayode, L. O. Adoghe, “A six-step continuous multistep method for the solution of general fourth order IVP of ODEs”, Journal of Natural Sciences Research, Vol. 5, No. 5, pp. 131-138, 2015

M. K. Duromola, “An accurate five off-step points implicit block method for direct solution of fourth order differential equations”, Open Access Library Journal, Vol. 3, No. 6, pp. 1-14, 2016 DOI: https://doi.org/10.4236/oalib.1102667

S. J. Kayode, “An Efficient zero-stable numerical method for fourth-order differential equations”, International Journal of Mathematics and Mathematical Sciences, Vol. 2008, Article ID 364021, 2008 DOI: https://doi.org/10.1155/2008/364021

S. J. Kayode, “An order six zero-stable method for direct solution of fourth order ODEs”, American Journal of Applied Sciences, Vol. 5, No. 11, pp. 1461-1466, 2008 DOI: https://doi.org/10.3844/ajassp.2008.1461.1466

S. J. Kayode, M. K. Duromola, B. Bolaji, “Direct Solution of initial value problems of fourth order ODEs using modified implicit hybrid block method”, Journal of Scientific Research and Reports, Vol. 3, No. 21, pp. 2792-2800, 2014 DOI: https://doi.org/10.9734/JSRR/2014/11953

T. Olabode, T. J. Alabi, “Direct block predictor-corrector method for the solution of general fourth order ODEs”, Journal of Mathematics Research, Vol. 5, No. 1, pp. 26-33, 2013 DOI: https://doi.org/10.5539/jmr.v5n1p26

Z. B. Ibrahim, K .I. Othman, M. Suleiman, “Implicit r-point block backward differentiation formula for solving first-order stiff ODEs”, Applied Mathematics and Computation, Vol. 186, No. 1, pp. 558-565, 2007 DOI: https://doi.org/10.1016/j.amc.2006.07.116

I Zarina, I. O. Khairil, M. Suleimann, “Variable step block backward differentiation formula for solving first-order stiff ODEs”, World Congress on Engineering, London, UK, Vol. 2, pp. 2-6, July 2-4, 2007

Z. A. Majid, M. B. Suleiman, “Implementation of Four-Point Fully Implicit Block Method for Solving Ordinary Differential Equations”, Applied Mathematics and Computation, Vol. 184, No. 2, pp. 514-522, 2007 DOI: https://doi.org/10.1016/j.amc.2006.05.169

Z. A. Majid, M. Suleiman, “Parallel direct integration variable step block method for solving large system of higher Order Ordinary Differential Equations”, World Academy of Science, Engineering and Technology, Vol. 2, No. 4, pp. 269-273, 2008

J. D. Lambert, Numerical Methods for Ordinary Differential Systems: The Initial Value Problem, John Wiley and Sons, 1991

J. D. Faires, R. L. Burden, Initial-value problems for ODEs, Dublin City University, 2012

C. W. Gear, Numerical Initial Value Problems in ODEs (Automatic Computation), Prentice-Hall, Inc., 1971

L. I. Ken, I. F. Ismail, M. Suleiman, Block Methods for Special Second Order Ordinary Differential Equations, Academic Publishing, 2011

U. M. Ascher, L. R. Petzold, Computer methods for ordinary differential equations and differential algebraic equations. SIAM, Philadelphia, 1998 DOI: https://doi.org/10.1137/1.9781611971392

Downloads

How to Cite

[1]
J. G. Oghonyon, S. A. Okunuga, K. S. Eke, and O. A. Odetunmibi, “Block Milne’s Implementation For Solving Fourth Order Ordinary Differential Equations”, Eng. Technol. Appl. Sci. Res., vol. 8, no. 3, pp. 2943–2948, Jun. 2018.

Metrics

Abstract Views: 484
PDF Downloads: 245

Metrics Information
Bookmark and Share

Most read articles by the same author(s)