Development and Experimental Investigation on Delay Time Consistency of Modified Si/PbO/Pb3O4/FG Pyrotechnic Delay Composition

  • Α. Khan School of Chemical and Material Engineering, National University of Science and Technology, Islamabad, Pakistan
  • Z. H. Lodhi School of Chemical and Material Engineering, National University of Science and Technology, Islamabad, Pakistan
  • A. Q. Malik School of Chemical and Materials Engineering, National University of Science and TechnologyIslamabad, Pakistan
Keywords: Delay Composition, Loading pressure, Time consistency, Delay time, Burning rate

Abstract

In the present study, experimental investigation was carried out on the delay time consistency of modified Si/PbO/Pb3O4/FG pyrotechnic delay composition in a delay tube. Where Si is the fuel, PbO/Pb3O4 are oxidizers and Fish Glue (FG) is the binder. Ingredient mixing and loading pressure were studied. Results revealed that homogenous mixing of the delay composition is a very critical parameter for controlling the time consistency of pyrotechnic delay composition. The delay time accuracy was improved from 25% to about 7.42% by ensuring homogenous mixing of the ingredients. Results also show that loading pressure ranged from 30,000 to 65,000 psi did not affect much the delay time of this pyrotechnic composition and the burning rate.

Downloads

Download data is not yet available.

References

J. C. Poret, A. P. Shaw, C. M. Csernica, K. D. Oyler, J. A. Vanatta, G. Chen, “Versatile Boron Carbide-Based Energetic Time Delay Composition”, ACS Sustainable Chemisrty and Engineering, Vol.1, No. 10, pp.1313-1338, 2013

H. Ren, Q. Jiao, S. C Chen, “Mixing Si and carbon nanotubes by a method of ball-milling and its application to pyrotechnic delay composition”, Journal of Physics and Chemistry of Solids, Vol. 71, No. 2, pp. 145–148, 2010

A. Bailey, S. G. Murray, Explosives, Propellants and Pyrotechnics, Brassey's: Putnam Aeronautical, 1988

C. G. Morgan, C. Rimmington, Production of pyrotechnic delay composition, US Patent 0314397 A1, 2009

J A. Conkling, Chemistry of Pyrotechnics Basic Principles and Theory, Marcel Dekker Inc, New York, 1985

L. Kalombo, “Evaluation of Bi2O3 and Sb6O13 as oxidants for silicon fuel in the delay detonators”, MSc Thesis, University of Pretoria, 2008

R. Aube, Delay composition and Detonation Delay Device Utilization, Patent-US 0223242 A1, 2008

B. J. Kosanke, K. L. Kosanke, “Control of Pyrotechnic Burn Rate”, Second International Symposium on Fireworks, 1994

Y. Li, Y. Ceng, Y. L. Hui, S. Yan “The Effect of Ambient Temperature and Boron Content on the Burning Rate of the B/Pb3O4 Delay Compositions”, Journal of Energetic Materials, Vol. 28, No. 2, pp.77-84, 2010

S. M Danali, R. S. Palaiah, K. C. Raha, “Developments in Pyrotechnics”, Defense Science Journal, Vol. 60, No. 2, pp.152-158, 2010

Military Specification, Manganese Delay Composition, MIL-M-21383A, 1976

Military Specification, Delay Composition T-10, MIL-D-85306A (AS), 1991

Military Specification, Delay Composition, Tungsten-Fluorocarbon Copolymer, MIL-D-82710(OS), 1984

Operating instructions, Haver Test Shaker EML 200-89 Digital, 1993

S. S. Al-Kazraji, G. J. Rees, “The fast pyrotechnic reaction of silicon and red lead”, Fuel, Vol. 58, No. 2, pp. 139-143, 1979

Metrics

Abstract Views: 481
PDF Downloads: 145 Untitled Downloads: 0

Metrics Information
Bookmark and Share