A Statistical Approach of the Flexural Strength of PLA and ABS 3D Printed Parts
Received: 7 January 2022 | Accepted: 21 January 2022 | Online: 9 April 2022
Corresponding author: D. G. Zisopol
Abstract
The need for rapid obtaining parts has made researchers to widely study 3D common printing technologies like FDM (Fused Depositing Modeling), SLS (Selective Laser Sintering), SLA (Stereolithography). Although FDM can provide high geometrical complexity of parts at convenient costs and with efficient delivery logistics, a set of printing parameters of the raw materials used for manufacturing needs to be optimized accordingly. Therefore, this study reveals the influence of printing parameters on the flexural strength of PLA (Polylactic Acid) and ABS (Acrylonitrile Butadiene Styrene) printed samples, by applying the Taguchi method and ANOVA (Analyisis of Variance) of 3-point bending tests results.
Keywords:
3Dprinting, experimental tests, 3-point bending, Taguchi methodDownloads
References
J. C. Camargo, Á. R. Machado, E. C. Almeida, and E. F. M. S. Silva, "Mechanical properties of PLA-graphene filament for FDM 3D printing," The International Journal of Advanced Manufacturing Technology, vol. 103, no. 5, pp. 2423–2443, Dec. 2019. DOI: https://doi.org/10.1007/s00170-019-03532-5
D. Popescu, A. Zapciu, C. Amza, F. Baciu, and R. Marinescu, "FDM process parameters influence over the mechanical properties of polymer specimens: A review," Polymer Testing, vol. 69, pp. 157–166, May 2018. DOI: https://doi.org/10.1016/j.polymertesting.2018.05.020
O. A. Mohamed, S. H. Masood, and J. L. Bhowmik, "Optimization of fused deposition modeling process parameters: a review of current research and future prospects," Advances in Manufacturing, vol. 3, no. 1, pp. 42–53, Nov. 2015. DOI: https://doi.org/10.1007/s40436-014-0097-7
X. Liu, M. Zhang, S. Li, L. Si, J. Peng, and Y. Hu, "Mechanical property parametric appraisal of fused deposition modeling parts based on the gray Taguchi method," The International Journal of Advanced Manufacturing Technology, vol. 89, no. 5, pp. 2387–2397, Nov. 2017. DOI: https://doi.org/10.1007/s00170-016-9263-3
T. N. A. T. Rahim, A. M. Abdullah, and H. Md Akil, "Recent Developments in Fused Deposition Modeling-Based 3D Printing of Polymers and Their Composites," Polymer Reviews, vol. 59, no. 4, pp. 589–624, Jul. 2019. DOI: https://doi.org/10.1080/15583724.2019.1597883
H. Yilmaz and M. K. Turan, "FahamecV1:A Low Cost Automated Metaphase Detection System," Engineering, Technology & Applied Science Research, vol. 7, no. 6, pp. 2160–2166, Dec. 2017. DOI: https://doi.org/10.48084/etasr.1464
B. Belarbi, M. E. A. Ghernaout, and T. Benabdallah, "Implementation of a New Geometrical Qualification (DQ) Method for an Open Access Fused Filament Fabrication 3D Printer," Engineering, Technology & Applied Science Research, vol. 9, no. 3, pp. 4182–4187, Jun. 2019. DOI: https://doi.org/10.48084/etasr.2689
T. Nancharaiah, D. R. Raju, and V. R. Raju, "An experimental investigation on surface quality and dimensional accuracy of FDM components," International Journal on Emerging Technologies, vol. 1, no. 2, pp. 106–111, 2010.
ISO 178:2019 Plastics — Determination of flexural properties. ISO, 2003.
M. Fernandez-Vicente, W. Calle, S. Ferrandiz, and A. Conejero, "Effect of Infill Parameters on Tensile Mechanical Behavior in Desktop 3D Printing," 3D Printing and Additive Manufacturing, vol. 3, no. 3, pp. 183–192, Jun. 2016. DOI: https://doi.org/10.1089/3dp.2015.0036
G. Taguchi, Introduction to Quality Engineering. Tokyo, Japan: Asian Productivity Organization, 1990.
L. Xinhua, L. Shengpeng, L. Zhou, Z. Xianhua, C. Xiaohu, and W. Zhongbin, "An investigation on distortion of PLA thin-plate part in the FDM process," The International Journal of Advanced Manufacturing Technology, vol. 79, no. 5, pp. 1117–1126, Apr. 2015. DOI: https://doi.org/10.1007/s00170-015-6893-9
G. S. Peace, Taguchi Methods: A Hands-On Approach. Reading, MS, USA: Addison-Wesley, 1992.
A. Portoaca, I. Nae, D. G. Zisopol, and I. Ramadan, "Studies on the influence of FFF parameters on the tensile properties of samples made of ABS," IOP Conference Series: Materials Science and Engineering, vol. 1235, no. 1, Nov. 2022, Art. no. 012008. DOI: https://doi.org/10.1088/1757-899X/1235/1/012008
D. G. Zisopol, I. Nae, A. I. Portoaca, and I. Ramadan, "A Theoretical and Experimental Research on the Influence of FDM Parameters on Tensile Strength and Hardness of Parts Made of Polylactic Acid," Engineering, Technology & Applied Science Research, vol. 11, no. 4, pp. 7458–7463, Aug. 2021. DOI: https://doi.org/10.48084/etasr.4311
C. F. J. Wu and M. S. Hamada, Experiments: Planning, Analysis, and Optimization, 2nd ed. Hoboken, NJ, USA: Wiley, 2009.
N. N. Antonescu, M. I. A. Naboulsi, M. G. Petrescu, and A. Neacsa, "Behaviour of Metal-Rubber Couplings or any other Plastic Materials in Translational Motion under Wear Generating Conditions," Journal of the Balkan Tribological Association, vol. 12, no. 4, 2006.
Downloads
How to Cite
License
Copyright (c) 2022 D. G. Zisopol, I. Nae, A. I. Portoaca, I. Ramadan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.