Structural and Electrical Properties of Ca2+ Doped LaFeO3: The Effect of A-site Cation Size Mismatch
Abstract
In this study, nanosized La1-xCaxFeO3 (0.00≤x≤0.40) compounds prepared via sol-gel method followed by heat treatment at 1100oC for 24 hours are studied. Crystal structure, microstructure, surface morphology and temperature-dependent resistivity of the samples are investigated. TEM investigation reveals nanoparticles with an average size of 35nm produced from the sol-gel process. The crystal structure of the compounds belongs to an orthorhombically distorted perovskite structure with Pbnm space group. Lattice distortion and cation size mismatch increase with an increase in Ca and particle and grain growth are suppressed by Ca doping. Electrical conduction is explained via thermally activated hopping of small polarons. Unit cell volume, charge ordering temperature, and activation energy for small polarons decrease linearly with an increase in cation size mismatch. Room temperature resistivity decreases with Ca doping and gets its minimum value for 30% Ca at which the orthorhombic distortion is maximum.
Keywords:
cation size mismatch, lattice distortion, particle size, grain size, charge orderDownloads
References
K. Mukhopadhyay, A. S. Mahapatra, P. K. Chakrabarti, “Multiferroic behavior, enhanced magnetization and exchange bias effect of Zn substituted nanocrystalline LaFeO3 (La(1−x)ZnxFeO3, x=0.10, and 0.30)”, Journal of Magnetism and Magnetic Materials, Vol. 329, pp. 133–141, 2013 DOI: https://doi.org/10.1016/j.jmmm.2012.09.063
X Liu, B. Cheng, J. Hu, H. Qin, M. Jiang, “Preparation, structure, resistance and methane-gas sensing properties of nominal La1−xMgxFeO3”, Sensors and Actuators B: Chemical, Vol. 133, No. 1, pp. 340-344, 2008 DOI: https://doi.org/10.1016/j.snb.2008.02.033
X. Dai, C. Yu, Q. Wu, “Comparison of LaFeO3, La0.8Sr0.2FeO3, and La0.8Sr0.2Fe0.9Co0.1O3 perovskite oxides as oxygen carrier for partial oxidation of methane”, Journal of Natural Gas Chemistry, Vol. 17, No. 4, pp. 415-418, 2008 DOI: https://doi.org/10.1016/S1003-9953(09)60019-0
Q. Lin, J. Xu, F. Yang, X. Yang, Y. He, “The influence of Ca substitution on LaFeO3 nanoparticles in terms of structural and magnetic properties”, Journal of Applied Biomaterials and Functional Materials, Vol. 16, No. 1, pp. 17–25, 2018 DOI: https://doi.org/10.1177/2280800017753948
A. M. Stoneham, J. Gavartin, A. L. Shluger, A. V. Kimmel, D. M. Ramo, H. M. Ronnow, G. Aeppli, C. Renner, “Trapping, self-trapping and the polaron family”, Journal of Physics: Condensed Matter, Vol. 19, No. 25, Article ID 255208, 2007 DOI: https://doi.org/10.1088/0953-8984/19/25/255208
Z. Zhou, L. Guo, H. Yang, Q. Liu, F. Ye, “Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites”, Journal of Alloys and Compounds, Vol. 583, pp. 21-31, 2014 DOI: https://doi.org/10.1016/j.jallcom.2013.08.129
L. Hou, G. Sun, K. Liu, Y. Li, F. Gao, “Preparation, characterization and investigation of catalytic activity of Li-doped LaFeO3 nanoparticles”, Journal of Sol-Gel Science and Technology, Vol. 40, pp. 9–14, 2006 DOI: https://doi.org/10.1007/s10971-006-8368-9
K. Taniguchi, N. Okinaka, T. Akiyama, “Preparation and characterization of La1−xKxFeO3 (x=0–1) by self-propagating high-temperature synthesis for use as soot combustion catalyst”, Journal of Alloys and Compounds, Vol. 509, No. 10, pp. 4084–4088, 2011 DOI: https://doi.org/10.1016/j.jallcom.2010.04.147
L. Sun, H. Qin, K. Wang, M. Zhao, J. Hu, “Structure and electrical properties of nanocrystalline La1−xBaxFeO3 for gas sensing application”, Materials Chemistry and Physics, Vol. 125, No. 1-2, pp. 305-308, 2011 DOI: https://doi.org/10.1016/j.matchemphys.2010.09.052
P. Song, H. Qin, L. Zhang, K. An, Z. Lin, J. Hu, M. Jiang, “The structure, electrical and ethanol-sensing properties of La1−xPbxFeO3 perovskite ceramics with x≤0.3”, Sensors and Actuators B: Chemical, Vol. 104, No. 2, pp. 312-316, 2005 DOI: https://doi.org/10.1016/j.snb.2004.05.023
R. Andoulsi, K. H. Naifer, M. Ferid, “Structural and electrical properties of calcium substituted lanthanum ferrite powders”, Powder Technology, Vol. 230, pp. 183–187, 2012 DOI: https://doi.org/10.1016/j.powtec.2012.07.026
L. B. Kong, Y. S. Shen, “Gas-sensing property and mechanism of CaxLa1xFeO3 ceramics”, Sensors and Actuators B: Chemical, Vol. 30, No. 3, pp. 217–221, 1996 DOI: https://doi.org/10.1016/0925-4005(96)80052-9
M. H. Hung, M. V. M. Rao, D. S. Tsai, “Microstructures and electrical properties of calcium substituted LaFeO3 as SOFC cathode”, Materials Chemistry and Physics, Vol. 101, No. 2-3, pp. 297–302, 2007 DOI: https://doi.org/10.1016/j.matchemphys.2006.05.008
A. Benali, S. Azizi, M. Bejar, E. Dhahri, M. F. P. Graca, “Structural, electrical and ethanol sensing properties of double-doping LaFeO3 perovskite oxides”, Ceramics International, Vol. 40, No. 9, pp. 14367-14373, 2014 DOI: https://doi.org/10.1016/j.ceramint.2014.06.029
L. Zhang, J. Hu, P. Song, H. Qin, M. Jiang, “Electrical properties and ethanol-sensing characteristics of perovskite La1−xPbxFeO3”, Sensors and Actuators B: Chemical, Vol. 114, No. 2, pp. 836-840, 2006 DOI: https://doi.org/10.1016/j.snb.2005.08.002
C. Shi, H. Qin, M. Zhao, X. Wang, L. Li, J. Hu, “Investigation on electrical transport, CO sensing characteristics and mechanism for nanocrystalline La1−xCaxFeO3 sensors”, Sensors and Actuators B: Chemical, Vol. 190, pp. 25-31, 2014 DOI: https://doi.org/10.1016/j.snb.2013.08.029
R. Andoulsi, K. H. Naifer, M. Ferid, “Electrical conductivity of La1−xCaxFeO3−δ solid solutions”, Ceramics International, Vol. 39, No. 6, pp. 6527-6531, 2013 DOI: https://doi.org/10.1016/j.ceramint.2013.01.085
A. E. Irmak, E. Tasarkuyu, A. Coskun, M. Acet, Y. Samancioglu, S. Akturk, “Magnetic and electrical transport properties of La0.65Ca0.30Pb0.05Mn0.90Cu0.10O3 compounds: Thermal hysteresis”, Physica B: Condensed Matter, Vol. 470–471, pp. 56-63, 2015 DOI: https://doi.org/10.1016/j.physb.2015.04.027
J. R. Carvajal, “Fullprof: A program for rietveld refinement and pattern matching analysis”, Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, July 19-8, 1990
J. Li, “Investigation of orthorhombic perovskite La1-xCaxFeO3-y(0 ≤ x ≤ 0.50)”, Physica Scripta, Vol. 45, pp. 62-64, 1992 DOI: https://doi.org/10.1088/0031-8949/45/1/011
A. L. Patterson, “The Scherrer formula for X-ray particle size determination”, Physical Review, Vol. 56, pp. 978-982, 1939 DOI: https://doi.org/10.1103/PhysRev.56.978
K. Ellmer, A. Bikowski, “Intrinsic and extrinsic doping of ZnO and ZnO alloys”, Journal of Physics D: Applied Physics, Vol. 49, No. 41, Article ID 413002, 2016 DOI: https://doi.org/10.1088/0022-3727/49/41/413002
Z. Jirak, S. Krupicka, Z. Simsa, M. Dlouha, S. Vratislav, “Neutron diffraction study of Pr1−xCaxMnO3 perovskites”, Journal of Magnetism and Magnetic Materials, Vol. 53, No. 1-2, pp. 153-166, 1985 DOI: https://doi.org/10.1016/0304-8853(85)90144-1
D. Nath, F. Singh, R. Das, “X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles-a comparative study”, Materials Chemistry and Physics, Vol. 239, Article ID 122021, 2020 DOI: https://doi.org/10.1016/j.matchemphys.2019.122021
Y. F. Sun, S. B. Liu, F. L. Meng, J. Y. Liu, Z. Jin, L. T. Kong, J. H. Liu, “Metal oxide nanostructures and their gas sensing properties: A review”, Sensors, Vol. 12, No. 3, pp 2610–2631, 2012 DOI: https://doi.org/10.3390/s120302610
G. A. Gamal, F. A. A. Mufadi, A. H. Said, “Effect of iron additives on the microstructure of hydroxyapatite”, Engineering, Technology & Applied Science Research, Vol. 3, No. 6, pp. 532-539, 2013 DOI: https://doi.org/10.48084/etasr.369
M. F. Garcia, J. A. Rodriguez, “Metal oxide nanoparticles”, in: Encyclopedia of Inorganic and Bioinorganic Chemistry, John Wiley & Sons, 2011
S. Boumous, S. Belkhiat, F. Kharchouche, “MgO effect on the dielectric properties of BaTiO3”, Engineering, Technology & Applied Science Research, Vol. 9, No. 3, pp. 4092-4099, 2019 DOI: https://doi.org/10.48084/etasr.2705
V. Rathod, A. V. Anupama, V. M. Jali, V. A. Hiremath, B. Sahoo, “Combustion synthesis, structure and magnetic properties of Li-Zn ferrite ceramic powders”, Ceramics International, Vol. 43, No. 16, pp. 14431–14440, 2017 DOI: https://doi.org/10.1016/j.ceramint.2017.07.213
M. Allieta, M. Scavini, L. L. Presti, M. Coduri, L. Loconte, S. Cappelli, C. Oliva, P. Ghigna, P. Pattison, V. Scagnoli, “Charge ordering transition in GdBaCo2O5: Evidence of reentrant behavior”, Physical Review B, Vol. 88, Article ID 214104, 2013 DOI: https://doi.org/10.1103/PhysRevB.88.214104
Y. Wang, Y. Sui, X. Wang, W. Su, “Structure, transport and magnetic properties of electron-doped perovskites RxCa1-xMnO3 (R=La, Y and Ce)”, Journal of Physics: Condensed Matter, Vol. 21, Article ID 196004, 2009 DOI: https://doi.org/10.1088/0953-8984/21/19/196004
M. Respaud, J. M. Broto, H. Rakoto, J. Vanacken, P. Wagner, C. Martin, A. Maignan, B. Raveau, “H−T magnetic phase diagrams of electron-doped Sm1−xCaxMnO3: Evidence for phase separation and metamagnetic transitions”, Physical Revew B, Vol. 63, Article ID 144426, 2001 DOI: https://doi.org/10.1103/PhysRevB.63.144426
L. M. R. Martinez, J. P. Attfield, “Cation disorder and size effects in magnetoresistive manganese oxide perovskites”, Physical Review B, Vol. 54, Article ID R15622, 1996 DOI: https://doi.org/10.1103/PhysRevB.54.R15622
A. Arulraj, P. N. Santhosh, R. S. Gopalan, A. Guha, A. K. Raychaudhuri, N. Kumar, C. N. R. Rao, “Charge ordering in the rare-earth manganates: The origin of the extraordinary sensitivity to the average radius of the A-site cations, ”, Journal of Physics: Condensed Matter, Vol. 10, Article ID 8497, 1998 DOI: https://doi.org/10.1088/0953-8984/10/38/010
A. J. Millis, P. B. Littlewood, B. I. Shraiman, “Double exchange alone does not explain the resistivity of La1−xSrxMnO3”, Physical Review Letters, Vol. 74, Article ID 5144, 1995 DOI: https://doi.org/10.1103/PhysRevLett.74.5144
W. H Jung, E. Icuchi, “Transition from hopping conduction to band conduction in LaFexNi1–xO3”, Philosophical Magazine B, Vol. 73, pp. 873-891, 1996 DOI: https://doi.org/10.1080/01418639608240320
N. F. Mott, E. A. Davis, Electronics processes in non-crystalline materials, Oxford University Press, 1971
I. G Austin, N. F. Mott, “Polarons in crystalline and non-crystalline materials”, Advances in Physics, Vol. 18, No. 71, pp. 41-102, 1969 DOI: https://doi.org/10.1080/00018736900101267
S. Brahma, R. N. P. Choudhary, A. K. Thakur, “AC impedance analysis of LaLiMo2O8 electroceramics”, Physica B: Condensed Matter, Vol. 355, No. 1-4, pp. 188-201, 2005 DOI: https://doi.org/10.1016/j.physb.2004.10.091
P. Ganguly, A. K. Jha, K. L. Deori, “Complex impedance studies of tungsten–bronze structured Ba5SmTi3Nb7O30 ferroelectric ceramics”, Solid State Communications, Vol. 146, No. 11-12, pp. 472-477, 2008 DOI: https://doi.org/10.1016/j.ssc.2008.04.003
M. Idrees, M. Nadeem, M. M. Hassan, “Investigation of conduction and relaxation phenomena in LaFe0.9Ni0.1O3 by impedance spectroscopy”, Journal of Physics D: Applied Physics, Vol. 43, No. 15, Article ID 155401, 2010 DOI: https://doi.org/10.1088/0022-3727/43/15/155401
H. Rahmouni, R. Jemai, M. Nouiri, N. Kallel, F. Rziguac, A. Selmi, K. Khirouni, S. Alaya, “Admittance spectroscopy and complex impedance analysis of Ti-modified La0.7Sr0.3MnO3”, Journal of Crystal Growth, Vol. 310, No. 3, pp. 556-561, 2008 DOI: https://doi.org/10.1016/j.jcrysgro.2007.11.027
S. Satpathy, Z. S. Popovic, F. R. Vukajlovic, “Electronic structure of the perovskite oxides: La1−xCaxMnO3”, Physical Review Letters, Vol. 76, Article ID 960, 1996 DOI: https://doi.org/10.1103/PhysRevLett.76.960
W. Khan, A. H. Naqvi, M. Gupta, S. Husain, R. Kumar, “Small polaron hopping conduction mechanism in Fe doped LaMnO3”, The Journal of Chemical Physics, Vol. 135, Article ID 054501, 2011 DOI: https://doi.org/10.1063/1.3615720
Y. Liu, X. Y. Qin, “Temperature dependence of electrical resistivity for Ca-doped perovskite-type Y1−xCaxCoO3 prepared by sol–gel process”, Journal of Physical Chemistry of Solids, Vol. 67, No. 8, pp. 1893-1898, 2006 DOI: https://doi.org/10.1016/j.jpcs.2006.05.006
Downloads
How to Cite
License
Copyright (c) 2020 Engineering, Technology & Applied Science Research
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.