CMOS Compatible Plasmonic Refractive Index Sensor based on Heavily Doped Silicon Waveguide

Authors

  • M. O. Faruque Department of Electrical and Electronic Engineering, Islamic University of Technology, Bangladesh
  • R. Al Mahmud Department of Electrical and Electronic Engineering, Islamic University of Technology, Bangladesh
  • R. H. Sagor Department of Electrical and Electronic Engineering, Islamic University of Technology, Bangladesh
Volume: 10 | Issue: 1 | Pages: 5295-5300 | February 2020 | https://doi.org/10.48084/etasr.3264

Abstract

In this study, a plasmonic refractive index (RI) sensor using heavily n-doped silicon waveguide is designed and numerically simulated using finite element method (FEM). The reported sensor is based on gratings inside a heavily doped silicon waveguide structure instead of a conventional metal-insulator-metal structure. This feature enables the device to overcome the limitations of conventional plasmonic devices like optical losses, polarization management, etc. Besides, it makes the device compatible with Complementary Metal Oxide Semiconductor (CMOS) technology and thus provides an easier way of practical fabrication and incorporation in integrated circuits. The presented sensor has a highest sensitivity of 1208.9nm/RIU and a resolution as small as 0.005 which is comparable with conventional plasmonic sensors reported to date. The main advantage of this plasmonic sensor is that it has a very simple structure and uses silicon instead of metal which provides an easier way of fabrication.

Keywords:

CMOS technology, heavily doped silicon, metal-insulator-metal, RI sensor

Downloads

Download data is not yet available.

References

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics”, Nature, Vol. 424, pp. 824-830, 2003 DOI: https://doi.org/10.1038/nature01937

D. K. Gramotnev, S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation”, Nature Photonics, Vol. 8, No. 1, pp. 14-23, 2014 DOI: https://doi.org/10.1038/nphoton.2013.232

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. Lavrinenko, S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas”, Nano Letters, Vol. 15, No. 12, pp. 8148-8154, 2015 DOI: https://doi.org/10.1021/acs.nanolett.5b03593

Z. Han, L. Liu, E. Forsberg, “Ultra-compact directional couplers and Mach–Zehnder interferometers employing surface plasmon polaritons”, Optics Communications, Vol. 259, No. 2, pp. 690-695, 2006 DOI: https://doi.org/10.1016/j.optcom.2005.09.034

Z. Kang, G. P. Wang, “Coupled metal gap waveguides as plasmonic wavelength sorters”, Optics Express, Vol. 16, No. 11, pp. 7680-7685, 2008 DOI: https://doi.org/10.1364/OE.16.007680

M. A. Butt, S. N. Khonina, N. L. Kazanskiy, “Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor”, Journal of Modern Optics, Vol. 65, No. 2, pp. 174-178, 2018 DOI: https://doi.org/10.1080/09500340.2017.1382596

M. A. Butt, S. A. Degtyarev, S. N. Khonina, N. L. Kazanskiy, “An evanescent field absorption gas sensor at mid-IR 3.39 μm wavelength”, Journal of Modern Optics, Vol. 64, No. 18, pp. 1892-1897, 2017 DOI: https://doi.org/10.1080/09500340.2017.1325947

Z. Zhou, H. Wu, J. Feng, J. Hou, H. Yi, X. Wang, “Silicon nanophotonic devices based on resonance enhancement”, Journal of Nanophotonics, Vol. 4, Article ID 041001, 2010 DOI: https://doi.org/10.1117/1.3527260

S. Akhtar, Z. Farid, H. Ahmed, S. A. Khan, Z. N. Khan, “Low-cost synthesis and characterization of silver nanoparticles for diverse sensing application”, Engineering, Technology & Applied Science Research, Vol. 9, No. 2, pp. 3915-3917, 2019 DOI: https://doi.org/10.48084/etasr.2450

D. Liu, J. Wang, F. Zhang, Y. Pan, J. Lu, X. Ni, “Tunable plasmonic band-pass filter with dual side-coupled circular ring resonators”, Sensors, Vol. 17, No. 3, pp. 585, 2017 DOI: https://doi.org/10.3390/s17030585

H. Wang, J. Yang, J. Zhang, J. Huang, W. Wu, D. Chen, G. Xiao, “Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure”, Optics Letters, Vol. 41, No. 6, pp. 1233-1236, 2016 DOI: https://doi.org/10.1364/OL.41.001233

M. Farhat, J. Munisami, M. A. Niby, M. Nahas, “A compact quint-band bandpass filter based on stub-loaded resonators”, Engineering, Technology & Applied Science Research, Vol. 7, No. 3, pp. 1694-1698, 2017 DOI: https://doi.org/10.48084/etasr.1208

J. Chee, S. Zhu, G. Q. Lo, “CMOS compatible polarization splitter using hybrid plasmonic waveguide”, Optics Express, Vol. 20, No. 23, pp. 25345-25355, 2012 DOI: https://doi.org/10.1364/OE.20.025345

K. W. Chang, C. C. Huang, “Ultrashort broadband polarization beam splitter based on a combined hybrid plasmonic waveguide”, Scientific Reports, Vol. 6, Article ID 19609, 2016 DOI: https://doi.org/10.1038/srep19609

F. Lou, D. Dai, L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric–hybrid plasmonic–dielectric coupler”, Optics Letters, Vol. 37, No. 16, pp. 3372-3374, 2012 DOI: https://doi.org/10.1364/OL.37.003372

Y. Gao, Q. Gan, Z. Xin, X. Cheng, F. J. Bartoli, “Plasmonic Mach–Zehnder interferometer for ultrasensitive on-chip biosensing”, ACS Nano, Vol. 5, No. 12, pp. 9836-9844, 2011 DOI: https://doi.org/10.1021/nn2034204

Q. Gan, Y. Gao, F. J. Bartoli, “Vertical plasmonic Mach-Zehnder interferometer for sensitive optical sensing”, Optics Express, Vol. 17, No. 23, pp. 20747-20755, 2009 DOI: https://doi.org/10.1364/OE.17.020747

O. Daneshmandi, A. Alighanbari, A. Gharavi, “Characteristics of new hybrid plasmonic Bragg reflectors based on sinusoidal and triangular gratings”, Plasmonics, Vol. 10, pp. 233-239, 2015 DOI: https://doi.org/10.1007/s11468-014-9800-6

A. Hosseini, Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector”, Optics Express, Vol. 14, No. 23, pp. 11318-11323, 2006 DOI: https://doi.org/10.1364/OE.14.011318

J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. Zou, S. Wen, “A wide bandgap plasmonic Bragg reflector”, Optics Express, Vol. 16, No. 7, pp. 4888-4894, 2008 DOI: https://doi.org/10.1364/OE.16.004888

Z. Zhang, J. Yang, X. He, J. Zhang, J. Huang, D. Chen, Y. Han, “Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator”, Sensors, Vol. 18, Article ID 116, 2018 DOI: https://doi.org/10.3390/s18010116

A. G. Brolo, “Plasmonics for future biosensors”, Nature Photonics, Vol. 6, pp. 709-713, 2012 DOI: https://doi.org/10.1038/nphoton.2012.266

W. C. Law, K. T. Yong, A. Baev, P. N. Prasad, “Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement”, ACS Nano, Vol. 5, No. 6, pp. 4858-4864, 2011 DOI: https://doi.org/10.1021/nn2009485

T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator”, Optics Express, Vol. 22, No. 7, pp. 7669-7677, 2014 DOI: https://doi.org/10.1364/OE.22.007669

T. Srivastava, R. Das, R. Jha, “Highly sensitive plasmonic temperature sensor based on photonic crystal surface plasmon waveguide”, Plasmonics, Vol. 8, No. 2, pp. 515-521, 2013 DOI: https://doi.org/10.1007/s11468-012-9421-x

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit”, Nature Communications, Vol. 4, pp. 2381, 2013 DOI: https://doi.org/10.1038/ncomms3381

H. Wang, “Plasmonic refractive index sensing using strongly coupled metal nanoantennas: Nonlocal limitations”, Scientific Reports, Vol. 8, Article ID 9589, 2018 DOI: https://doi.org/10.1038/s41598-018-28011-x

L. D. Landau, J. S. Bell, M. J. Kearsley, L. P. Pitaevskii, E. M. Lifshitz, J. B. Sykes, Electrodynamics of continuous media, Elsevier, 2013

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals”, Physical Review B, Vol. 6, pp. 4370, 1972 DOI: https://doi.org/10.1103/PhysRevB.6.4370

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials”, Nature Nanotechnology, Vol. 10, No. 1, pp. 2-6, 2015 DOI: https://doi.org/10.1038/nnano.2014.310

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, “Optical cloaking with metamaterials”, Nature Photonics, Vol. 1, pp. 224-227, 2007 DOI: https://doi.org/10.1038/nphoton.2007.28

Y. Yagil, G. Deutscher, “Transmittance of thin metal films near the percolation threshold”, Thin Solid Films, Vol. 152, No. 3, pp. 465-471, 1987 DOI: https://doi.org/10.1016/0040-6090(87)90262-8

F. Abeles, Y. Borensztein, T. L. Rios, “Optical properties of discontinuous thin films and rough surfaces of silver”, Advances in Solid State Physics, pp. 93-117, 1984 DOI: https://doi.org/10.1007/BFb0107447

S. A. Maier, Plasmonics: Fundamentals and applications, Springer, 2007 DOI: https://doi.org/10.1007/0-387-37825-1

M. G. Saber, N. Abadia, D. V. Plant, “CMOS compatible all-silicon TM pass polarizer based on highly doped silicon waveguide”, Optics Express, Vol. 26, No. 16, pp. 20878-20887, 2018 DOI: https://doi.org/10.1364/OE.26.020878

Z. Qi, G. Hu, L. Li, B. Yun, R. Zhang, Y. Cui, “Design and analysis of a compact soi-based aluminum/highly doped p-type silicon hybrid plasmonic modulator”, IEEE Photonics Journal, Vol. 8, No. 3, pp. 4801711, 2016 DOI: https://doi.org/10.1109/JPHOT.2016.2559439

G. V. Naik, V. M. Shalaev, A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver”, Advanced Materials, Vol. 25, No. 24, pp. 3264-3294, 2013 DOI: https://doi.org/10.1002/adma.201205076

Y. B. Chen, Z. M. Zhang, “Heavily doped silicon complex gratings as wavelength-selective absorbing surfaces”, Journal of Physics D: Applied Physics, Vol. 41, No. 9, Article ID 095406, 2008 DOI: https://doi.org/10.1088/0022-3727/41/9/095406

D. K. Schroder, R. N. Thomas, J. C. Swartz, “Free carrier absorption in silicon”, IEEE Journal of Solid-State Circuits, Vol. 13, No. 1, pp. 180-187, 1978 DOI: https://doi.org/10.1109/JSSC.1978.1051012

M. V. Exter, D. Grischkowsky, “Carrier dynamics of electrons and holes in moderately doped silicon”, Physical Review B, Vol. 41, Article ID 12140, 1990 DOI: https://doi.org/10.1103/PhysRevB.41.12140

S. Naghizadeh, S. E. Kocabas, “Guidelines for designing 2D and 3D plasmonic stub resonators”, JOSA B, Vol. 34, No. 1, pp. 207-217, 2017 DOI: https://doi.org/10.1364/JOSAB.34.000207

COMSOL multiphysics user’s guide, Version: September 2005, Comsol, 2005

Downloads

How to Cite

[1]
Faruque, M.O., Al Mahmud, R. and Sagor, R.H. 2020. CMOS Compatible Plasmonic Refractive Index Sensor based on Heavily Doped Silicon Waveguide. Engineering, Technology & Applied Science Research. 10, 1 (Feb. 2020), 5295–5300. DOI:https://doi.org/10.48084/etasr.3264.

Metrics

Abstract Views: 753
PDF Downloads: 440

Metrics Information