On the Nature of Superconducting Precursors in Bi-Pb-Sr-Ca-Cu-O Compositions Fabricated by Hot Shock Wave Consolidation Technology
Abstract
In this paper, the possibility of critical temperature increasing of superconducting precursor Tс and the current bearing capacity in samples of Bi-Pb-Sr-Ca-Cu-O superconducting system fabricated using hot shock wave consolidation (HSWC) technology and investigated by the vibrating torsional magnetometry method, was studied. The advantage of HSWC technology over the traditional technologies of superconducting composites synthesis is that the high-density materials are made from the Bi-Pb-Sr-Ca-Cu-O superconducting system. After the action of explosive wave the superconductivity is retained. After the explosion a pronounced texture is formed indicating the creation of efficient pinning centers and thus, the increase of current-carrying ability of the obtained material. The critical temperature of potential superconducting precursor Tc of transition to superconducting state increased from Tc=107K for starting sample to Tc=138K, using the HSWC technology for synthesis of samples in range of pressures from P=5GPa up to P=12GPa.
Keywords:
HTSC, shock-wave consolidation, vibrating torsional magnetometry, ctitical temperature of superconducting transition, high-temperature superconducting phases, pinningDownloads
References
G. C. Yu, D.-D. Xia, D. Pelc, R.-H. He, N.-H. Kaneko, T. Sasagawa, Y. Li, X. Zhao, N. Barišić, A. Shekhter, M. Greven, “Universal superconducting precursor in the cuprates”, arXiv:1710.10957, 2017
J. G. Chigvinadze, J. V. Acrivos, S. M. Ashimov, D. D. Gulamova, G. J. Donadze, “Superconductivity at Т≈200 K in bismuth cuprates synthesized using solar energy”, arXiv:1710.10430v1, 2017
D. D. Gulamova, D. G. Chigvinadze, J. V. Acrivos, D. E. Uskenbaev, “Obtaining and studying the properties of high-temperature superconductors of homologous series of Bi1.7Pb0.3Sr2Can-1CunOy (n=4-9), under influence of solar energy”, Applied Solar Energy, Vol. 48, pp. 135-139, 2012 DOI: https://doi.org/10.3103/S0003701X12020090
S. M. Ashimov, Dzh. G. Chigvinadze, “A torsion balance for studying anisotropic magnetic properties of superconducting materials”, Instruments and Experimental Techniques, Vol. 45, No. 3, pp. 431-435, 2002 DOI: https://doi.org/10.1023/A:1016048428894
T. Gegechkori, G. Mamniashvili, A. Peikrishvili, V. Peikrishvili, B. Godibadze, “Using Fast Hot Shock Wave Consolidation Technology to Produce Superconducting MgB2”, Engineering, Technology & Applied Science Research, Vol. 8, No. 1, pp. 2374-2478, 2018 DOI: https://doi.org/10.48084/etasr.1690
N. S. Sidorov, A. V. Palnichenko, D. V. Shakhrai, V. V. Avdonin, O. M. Vyaselev, S. S. Khasanov, “Superconductivity of Mg/MgO interface formed by shock-wave pressure”, Physica C: Superconductivity, Vol. 488, pp. 18-24, 2013 DOI: https://doi.org/10.1016/j.physc.2013.02.012
G. Mamniashvili, D. Daraselia, D. Japaridze, A. Peikrishvili, B. Godibadze, “Liquid-phase shock-assisted consolidation of superconducting MgB2 composites”, Journal of Superconductivity and Novel Magnetism, Vol. 28, No. 7, pp. 1925-1929, 2015 DOI: https://doi.org/10.1007/s10948-015-3007-8
E. L. Andronikashvili, J. G. Chigvinadze, R. M. Kerr, J. Lowell, K. Mendelson, J. S. Tsakadze, “Flux pinning in thermodynamically reversible type II superconductors”, Cryogenics, Vol. 9, No. 2, pp. 119-121, 1969 DOI: https://doi.org/10.1016/0011-2275(69)90191-X
J. G. Chigvinadze, “Investigation of dissipative processes in single-crystal type II superconductors”, Soviet Physics, Journal of Experimental and Theoretical Physics, Vol. 36, No. 6, pp. 1132-1135, 1973
J. G. Chigvinadze, “Effect of surface and volume defects on the dissipative processes in type-II superconductors”, Soviet Physics, Journal of Experimental and Theoretical Physics, Vol. 65, No. 5, pp. 950-962, 1974
J. G. Chigvinadze, J. V. Acrivos, S. M. Ashimov, A. A. Iashvili, T. V. Machaidze, G. I. Mamniashvili, Th. Wolf, “Investigation of stimulated dynamics of vortex matter in high-temperature superconductors”, Physics Letters A, Vol. 349, No. 1-4, pp. 264-270, 2006 DOI: https://doi.org/10.1016/j.physleta.2005.08.094
A. A. Abrikosov, “On the magnetic properties of superconductors of the second group”, Soviet Physics, Journal of Experimental and Theoretical Physics, Vol. 5, pp. 1174-1957, 1957
Downloads
How to Cite
License
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.