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ABSTRACT 

Frequent Pattern Mining (FPM) is an important data mining task that involves identifying recurrent 

patterns or correlations in datasets. The main purpose of FPM algorithms is to find sets of items that 

frequently appear in transactional or relational databases. This study presents a Parallel and Distributed 

Recursive Elimination (PDReLim) algorithm, a novel FPM technique designed for parallel computing to 

improve efficiency compared to existing parallel FPM algorithms. PDReLim recursively deletes infrequent 

items on each node while using the capabilities of parallel and distributed systems or clusters. Its 

performance was evaluated on well-known datasets, namely Chess, Mushroom, and Connect, available in 

the UCI repository, with a focus on the lowest support threshold, which causes computational bottlenecks 

for many FPM algorithms. PDReLim, implemented in PySpark, outperforms standard MapReduce for 

iterative algorithms. Spark's execution is optimized for large databases by utilizing its proficient 

capabilities, such as the RDD data structure, in-memory processing, and shared variables. The results 

show that PDReLim was significantly faster than PApriori, PFP-Growth, and PFP-Max. 
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I. INTRODUCTION  

Basic association rules are a serial strategy that was utilized 
by mining algorithms but is inefficient for larger datasets. As 
databases expand in size, their accuracy starts to decline 
slowly. As a result, parallel algorithms came into play to 
manage massive datasets. Various cluster-based techniques are 
available to manage large datasets, but they introduce several 
issues such as redundant data, synchronization, etc. As a result, 
the parallel approach was replaced by the MapReduce 
approach. Apriori and FP-Growth are the best algorithms for 
finding frequent itemsets. The MapReduce approach is the best 
platform for implementing the Apriori algorithm. A Resilient 
Distributed Dataset (RDD) in Spark aids in the resolution of 
such problems. The key benefit of using these attributes is that 
the outcome of the iteration is preserved in a local cache and is 
available for subsequent iterations. Spark focuses on analytics 
and large-scale data processing. The capacity of Apache Spark 
to split data processing activities across a network of computers 
allows for scalable and parallel processing of large datasets, 
using different high-level APIs such as Python, R, Scala, and 
Java. PySpark is the Python programming interface for Apache 

Spark. RDD is the core data structure in Spark that denotes 
dispersed datasets that can be handled concurrently.  

A. Research Problem and Motivation 

Parallel frequent mining algorithms, such as PApriori and 
PFP-Growth, lack scalability and cannot use the capability of 
parallel processing and distributed systems of PySpark. 
Existing algorithms are inefficient due to inappropriate pruning 
strategies. In [1], a systematic review of parallel and distributed 
association rule mining algorithms was presented. This study 
provides a guide for researchers and suggests interesting 
research directions. In [2], different parallel and distributed 
algorithms were surveyed on various hardware platforms, 
focusing on the scalability of the algorithms to handle massive 
datasets. The DHP algorithm extends the Apriori approach by 
using a hash table to precompute approximate support of two 
itemsets. In [3], a comprehensive survey of the Parallel 
Association Rule Mining (PARM) and Distributed Association 
Rule Mining (DARM) approaches was presented, providing a 
systematic and rigorous evaluation of significant developments 
in the field. In [4], different FPM algorithms were analyzed and 
tested on four real-life datasets: Retail, Accidents, Chess, and 
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Mushrooms. The evaluation was based on execution time and 
memory consumption, and Pre-post+ outperformed the others 
on the Mushrooms dataset. Big data analytics is important for 
extracting knowledge from large datasets [5]. Frequent Itemset 
Mining (FIM) is a key data mining technique. However, FIM 
algorithms, such as Apriori and Eclat, suffer from efficiency 
issues with big data. SHFIM [5] is a hybrid Spark-based 
algorithm for FIM, utilizing both horizontal and vertical 
layouts and diffsets for efficiency, while the experimental 
results showed that it outperformed Eclat and dEclat in 
execution time. In [2], the use of Association Rule Mining 
(ARM) in data mining was discussed. ARM can be used to find 
subsets of items that frequently occur together. This study 
surveyed different parallel and distributed ARM algorithms 
proposed on various hardware platforms. In [6], the focus was 
on ARM and FIM, reviewing existing algorithms and 
proposing new efficient algorithms using Spark. The aim was 
to handle large amounts of data and compare algorithms in 
terms of speed, efficiency, and memory consumption.  

In [7], the focus was on the parallel mining of association 
rules in streaming data, as traditional data mining algorithms 
are not suitable for large streaming data. This study proposed 
the SSPFP algorithm using Spark Streaming for real-time 
mining to mine association rules in marine Argo data. In [8], a 
parallel implementation of data mining techniques for FPM 
was presented, comparing the performance of parallel, 
concurrent, and serial implementations and highlighting the 
advantages of FPM. In [9], an improved version of the Apriori 
algorithm was presented, which offered superior performance 
compared to current methods on a spark framework with the 
aid of PySpark. In [10], three datasets were used to compare 
different approaches for log file pattern mining using the 
Apache Spark platform. A new algorithm was also proposed, 
based on Apriori, to optimize the extraction of association rules 
from databases. The proposed algorithm outperformed Eclat 
and LCM Freq in terms of speed and memory consumption, 
saving more than half of the memory on the Chess database. In 
[11], the Orange tool surpassed KNIME in effectively 
identifying cyberbullying cases in Arabic comments on 
Instagram. In [12], a novel approach was presented to optimize 
the extraction of association rules, showing notable gains in 
computing efficiency, significantly reducing the number of 
created itemsets and the overall execution time compared to 
more conventional techniques such as Apriori. In [13], a 
thorough analysis of Privacy-Preserving Data Mining (PPDM) 
methods was presented, highlighting how crucial they are to 
protecting private information while allowing insightful 
analysis of large datasets. The computational complexity of 
identifying maximally frequent itemsets can be high, especially 
when dealing with large or complexly patterned datasets. The 
time and memory requirements to mine these itemsets can 
become expensive as the dataset grows larger and more 
complex [14]. 

II. PROPOSED SYSTEM  

In association rule mining, the goal is to find interesting 
relationships or associations between items in a dataset. The 
Recursive Elimination (ReLim) algorithm is designed to 
address some of the performance issues associated with Apriori 

using a recursive approach to eliminate infrequent itemsets 
efficiently. The basic idea is to identify the most frequent 
itemsets first and then recursively eliminate infrequent itemsets 
to reduce the search space. The association rule mining method 
in ReLim starts by initializing the full transaction database. It 
scans and counts the number of occurrences to identify 
frequent 1-itemsets. Using them, it creates candidate 2-
itemsets, detects frequent 2-itemsets, and recursively eliminates 
infrequent itemsets while producing higher-order candidates. 
This technique is repeated iteratively until no more frequent 
item sets can be found. The key idea behind ReLim is to 
recursively eliminate infrequent itemsets at each step, reducing 
the search space and improving efficiency compared to other 
algorithms such as Apriori. The algorithm takes advantage of 
the fact that if a set of items is infrequent, any superset 
containing that set is also infrequent. 

A. Proposed PDReLim Algorithm 

Implementing the ReLim algorithm in parallel using 
PySpark is a good strategy to handle large datasets more 
efficiently. PySpark is a Python library for Apache Spark, a 
distributed computing framework that allows for parallel and 
distributed processing. The parallel implementation of the 
ReLim algorithm follows data preparation and data 
distribution. Parallelizing the ReLim algorithm involves 
distributing the workload across multiple processors or nodes 
to enhance the efficiency of frequent itemset mining on large 
datasets. The basic steps for the PDReLim are as follows. 

1) Data Distribution 

Divide the transaction dataset into smaller segments. In a 
parallel computing environment, each partition should be 
processed independently by individual processors or nodes. In 
PySpark, for example, this can be accomplished by 
repartitioning the DataFrame. 

2) Parallel Frequent 1-Itemset Mining 

Assign frequent 1-itemsets to different divisions for 
computation. Each partition counts the number of 1-itemsets 
that appear locally. Identify frequent 1-itemsets globally by 
combining local results. 

3) Parallel Candidate Generation 

Use the frequent 1-itemsets to generate candidate 2-itemsets 
simultaneously. Each division creates candidates locally, which 
are subsequently combined globally. Repeat the process for 
higher-order itemsets, generating (k+1)-itemsets from common 
k-itemsets. 

4) Parallel Counting and Recursive Elimination: 

Divide the counting and recursive elimination steps into 
partitions. Each partition counts the occurrences of candidate 
itemsets locally and discards infrequent itemsets. Combine the 
results to determine globally frequent itemsets. 

5) Iterative Processing 

Repeat iteratively until no more frequent itemsets can be 
formed or a predetermined maximum iteration is obtained. 
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6) Association Rule Generation 

Generate association rules in parallel using frequent 
itemsets. 

7) Finalize and Aggregate Results 

Combine and finalize findings from many partitions to get a 
comprehensive set of frequent items. 

8) Optimizations 

Optimize performance through data caching, and use 
efficiently broadcast variables and appropriate partitioning 
schemes. 

The steps for implementing the PDReLim algorithm using 
PySpark are as follows: 

 Step 1: Load the transaction dataset into a PySpark 
DataFrame. 

 Step 2: Preprocess the data as required for the ReLim 
method, ensuring that it is spread among Spark jobs.  

 Step 3: Repartition the DataFrame to divide the data among 
Spark partitions. This ensures that each division can be 
processed independently by many workers. 

 Step 4: Define the logic of the ReLim algorithm using 
PySpark transformations and actions. This includes 
filtering, grouping, and aggregating data to find common 
itemsets. 

 Step 5: Use PySpark's parallel processing capabilities. 
Many PySpark transformations are automatically 
parallelized. 

 

 
Fig. 1.  Flowchart of the PDReLim algorithm. 

III. RESULTS AND DISCUSSION  

The results were based on the support value provided by the 
user during the execution. The procedure was carried out on a 
single workstation using three datasets from the UCI dataset 
repository, namely Mushroom [15], Connect [16], and Chess 
[17]. The performance of the PDReLim algorithm was 
evaluated based on execution times. 

TABLE I.  DATASET CHARACTERISTICS 

Dataset Items Average length Transactions Size 

Chess 75 35 3198 334K 
Connect 127 36 1352 15.9M 

Mushroom 119 21 8122 557K 
 

A. Experimental Setup 

A workstation equipped with an Intel i7 processor, 16 GB 
RAM, and a 2 TB SATA 2 hard drive served as the basis for 
the implementation configuration. The experiments were coded 
on Anaconda3-2023.09-0-Windows-x86_64 with Jupyter and 
Spark 3.4.2 with Python on Windows 10. The algorithms were 
tested on a single workstation. 

B. Results on Mushroom Dataset 

The Mushroom classification dataset [15] is a well-known 
benchmark. Table II and Figure 2 show the performance of the 
PDReLim algorithm using different minimum support and 
threshold values on this dataset. The support value is used for 
the frequency threshold and to discard infrequent itemsets. The 
results of the experimental execution time show that PDReLim 
was more efficient than PAriori, PFP-Growth, PFP-max, and 
Peclat. On average, the PDReLim algorithm was approximately 
six times faster than PApriori, three times faster than PFP-
Growth, and 1.5 times faster than PFP-max.  

TABLE II.  EXECUTION TIME (MS) ON THE MUSHROOM 
DATASET 

Support PApriori PFP-Growth PFP-max Peclat PDReLim 

10 4838 2278 1126 1089 846 
20 648 372 325 440 325 
40 325 190 140 120 114 
60 282 120 113 106 97 
80 240 102 92 84 68 

 

 
Fig. 2.  Performance comparison on the Mushroom dataset. 

C. Results on Connect Dataset 

Each game state from the Connect-4 board game in the 
Connect dataset [16] corresponds to a particular board 
configuration. The aim variable specifies the game outcome 
(victory, loss, or draw) for the first player, while the 
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characteristics define the positions of the pieces on the board. 
Figure 3 and Table III show the execution times of PApriori, 
PFP-Growth, Peclat, PFP-max, and the proposed PDReLim on 
the Connect dataset. A high minimum support criterion was 
used since all algorithms ran out of memory when the 
minimum support was less than 95. The results show that 
PDReLim was faster than the other algorithms, being 
approximately five times faster than PApriori, four times faster 
than PFP-Growth, and two times faster than PFP-max on 
average. 

TABLE III.  EXECUTION TIME (MS) ON CONNECT DATASET 

Support PApriori PFP-Growth PFP-max Peclat PDReLim 

95 6743 4318 2245 1552 1224 
96 2131 1342 2048 1280 1143 
97 1235 1022 984 1249 857 
98 802 726 553 629 219 
99 426 349 248 223 128 

 

 
Fig. 3.  Performance comparison on the Connect dataset. 

D. Results on Chess Dataset  

The Chess dataset [17] includes several chess-related 
datasets, including the King-Rook vs. King-Pawn and Chess 
Endgame datasets, recording board configurations and potential 
outcomes according to game rules. This dataset contains chess-
related information, such as turns, results, or approaches, and it 
is useful for understanding chess-playing principles and 
techniques. Figure 4 and Table IV show the performance of 
PDReLim, which performed approximately four times better 
than PApriori, three times faster than PFP-Growth, and two 
times faster than PFP-max on average. 

 

 
Fig. 4.  Performance comparison on the Chess dataset. 

TABLE IV.  EXECUTION TIME (MS) ON CHESS DATASET 

Support PApriori Pfp-growth Pfp-max Peclat PDReLim 

10 3245 2243 1549 1027 824 
20 2732 895 547 478 274 
40 1352 545 575 358 148 
60 648 324 286 346 112 
80 232 210 154 139 76 

IV. CONCLUSION 

Τhis study introduces PDReLim, a novel FPM algorithm 
designed within the parallel computing framework to enhance 
efficiency by using the parallelization scheme of FPM 
algorithms. This method focuses on the simultaneous deletion 
of infrequent itemsets at each node, acquiring the advantage of 
the power of distributed systems or clusters with a large 
number of nodes. PDReLim was evaluated in terms of 
execution speed and accuracy using the frequently used 
datasets Chess, Mushroom, and Connect from the UCI 
repository [15-17]. On the Musroom dataset, PDReLim was 
around six times faster than PApriori, three times faster than 
PFP-Growth, and 1.5 times faster than Pfpmax. On the Connect 
dataset, PDReLim was about five times faster than PApriori, 
four times faster than Pfpgrowth, and two times faster than 
PFP-max. PDReLim outperformed PApriori, PFP-Growth, and 
PFP-max approximately four, three, and two times, 
respectively. The implementation of PDReLim in PySpark 
demonstrated higher performance for iterative algorithms. The 
execution for large datasets was optimized using Spark's 
advanced capabilities, such as the RDD data structure, in-
memory processing, and shared variables. These results 
demonstrate that PDReLim improves both speed and accuracy, 
making it a potential solution for PFP mining. Compared to 
existing parallel FPM techniques, PDReLim is novel because 
of its highly effective parallelization and unique pruning 
method for infrequent itemsets. PDReLim redefines the state-
of-the-art in parallel FPM by addressing major computing 
constraints and providing a scalable and efficient solution for 
large-scale data analysis. The next phase seeks to take 
advantage of GPUs' parallel processing capabilities, which 
could unleash even bigger performance advantages. 
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