
Engineering, Technology & Applied Science Research Vol. 15, No. 3, 2025, 22252-22256 22252

www.etasr.com Singla & Gandhi: An Algorithm to Optimize Frequent Pattern Mining in Parallel and Distributed …

An Algorithm to Optimize Frequent Pattern
Mining in Parallel and Distributed Environment

Anshu Singla

Faculty of Computer Applications, Manav Rachna International Institute of Research and Studies
(MRIIRS), Faridabad, Haryana, India | KCCITM, Greater Noida, India
singlaanshu2016@gmail.com (corresponding author)

Parul Gandhi

Faculty of Computer Applications, Manav Rachna International Institute of Research and Studies
(MRIIRS), Faridabad, Haryana, India
parul.sca@mriu.edu.in

Received: 4 December 2024 | Revised: 25 December 2024, 14 January 2025, 1 February 2025, 3 February 2025 | Accepted: 5 February 2025

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.9830

ABSTRACT

Frequent Pattern Mining (FPM) is an important data mining task that involves identifying recurrent

patterns or correlations in datasets. The main purpose of FPM algorithms is to find sets of items that

frequently appear in transactional or relational databases. This study presents a Parallel and Distributed

Recursive Elimination (PDReLim) algorithm, a novel FPM technique designed for parallel computing to

improve efficiency compared to existing parallel FPM algorithms. PDReLim recursively deletes infrequent

items on each node while using the capabilities of parallel and distributed systems or clusters. Its

performance was evaluated on well-known datasets, namely Chess, Mushroom, and Connect, available in

the UCI repository, with a focus on the lowest support threshold, which causes computational bottlenecks

for many FPM algorithms. PDReLim, implemented in PySpark, outperforms standard MapReduce for

iterative algorithms. Spark's execution is optimized for large databases by utilizing its proficient

capabilities, such as the RDD data structure, in-memory processing, and shared variables. The results

show that PDReLim was significantly faster than PApriori, PFP-Growth, and PFP-Max.

Keywords-PySpark; Frequent Pattern Mining (FPM); parallel FPM; Spark; association rule mining; apriori;

eclat

I. INTRODUCTION

Basic association rules are a serial strategy that was utilized
by mining algorithms but is inefficient for larger datasets. As
databases expand in size, their accuracy starts to decline
slowly. As a result, parallel algorithms came into play to
manage massive datasets. Various cluster-based techniques are
available to manage large datasets, but they introduce several
issues such as redundant data, synchronization, etc. As a result,
the parallel approach was replaced by the MapReduce
approach. Apriori and FP-Growth are the best algorithms for
finding frequent itemsets. The MapReduce approach is the best
platform for implementing the Apriori algorithm. A Resilient
Distributed Dataset (RDD) in Spark aids in the resolution of
such problems. The key benefit of using these attributes is that
the outcome of the iteration is preserved in a local cache and is
available for subsequent iterations. Spark focuses on analytics
and large-scale data processing. The capacity of Apache Spark
to split data processing activities across a network of computers
allows for scalable and parallel processing of large datasets,
using different high-level APIs such as Python, R, Scala, and
Java. PySpark is the Python programming interface for Apache

Spark. RDD is the core data structure in Spark that denotes
dispersed datasets that can be handled concurrently.

A. Research Problem and Motivation

Parallel frequent mining algorithms, such as PApriori and
PFP-Growth, lack scalability and cannot use the capability of
parallel processing and distributed systems of PySpark.
Existing algorithms are inefficient due to inappropriate pruning
strategies. In [1], a systematic review of parallel and distributed
association rule mining algorithms was presented. This study
provides a guide for researchers and suggests interesting
research directions. In [2], different parallel and distributed
algorithms were surveyed on various hardware platforms,
focusing on the scalability of the algorithms to handle massive
datasets. The DHP algorithm extends the Apriori approach by
using a hash table to precompute approximate support of two
itemsets. In [3], a comprehensive survey of the Parallel
Association Rule Mining (PARM) and Distributed Association
Rule Mining (DARM) approaches was presented, providing a
systematic and rigorous evaluation of significant developments
in the field. In [4], different FPM algorithms were analyzed and
tested on four real-life datasets: Retail, Accidents, Chess, and

Engineering, Technology & Applied Science Research Vol. 15, No. 3, 2025, 22252-22256 22253

www.etasr.com Singla & Gandhi: An Algorithm to Optimize Frequent Pattern Mining in Parallel and Distributed …

Mushrooms. The evaluation was based on execution time and
memory consumption, and Pre-post+ outperformed the others
on the Mushrooms dataset. Big data analytics is important for
extracting knowledge from large datasets [5]. Frequent Itemset
Mining (FIM) is a key data mining technique. However, FIM
algorithms, such as Apriori and Eclat, suffer from efficiency
issues with big data. SHFIM [5] is a hybrid Spark-based
algorithm for FIM, utilizing both horizontal and vertical
layouts and diffsets for efficiency, while the experimental
results showed that it outperformed Eclat and dEclat in
execution time. In [2], the use of Association Rule Mining
(ARM) in data mining was discussed. ARM can be used to find
subsets of items that frequently occur together. This study
surveyed different parallel and distributed ARM algorithms
proposed on various hardware platforms. In [6], the focus was
on ARM and FIM, reviewing existing algorithms and
proposing new efficient algorithms using Spark. The aim was
to handle large amounts of data and compare algorithms in
terms of speed, efficiency, and memory consumption.

In [7], the focus was on the parallel mining of association
rules in streaming data, as traditional data mining algorithms
are not suitable for large streaming data. This study proposed
the SSPFP algorithm using Spark Streaming for real-time
mining to mine association rules in marine Argo data. In [8], a
parallel implementation of data mining techniques for FPM
was presented, comparing the performance of parallel,
concurrent, and serial implementations and highlighting the
advantages of FPM. In [9], an improved version of the Apriori
algorithm was presented, which offered superior performance
compared to current methods on a spark framework with the
aid of PySpark. In [10], three datasets were used to compare
different approaches for log file pattern mining using the
Apache Spark platform. A new algorithm was also proposed,
based on Apriori, to optimize the extraction of association rules
from databases. The proposed algorithm outperformed Eclat
and LCM Freq in terms of speed and memory consumption,
saving more than half of the memory on the Chess database. In
[11], the Orange tool surpassed KNIME in effectively
identifying cyberbullying cases in Arabic comments on
Instagram. In [12], a novel approach was presented to optimize
the extraction of association rules, showing notable gains in
computing efficiency, significantly reducing the number of
created itemsets and the overall execution time compared to
more conventional techniques such as Apriori. In [13], a
thorough analysis of Privacy-Preserving Data Mining (PPDM)
methods was presented, highlighting how crucial they are to
protecting private information while allowing insightful
analysis of large datasets. The computational complexity of
identifying maximally frequent itemsets can be high, especially
when dealing with large or complexly patterned datasets. The
time and memory requirements to mine these itemsets can
become expensive as the dataset grows larger and more
complex [14].

II. PROPOSED SYSTEM

In association rule mining, the goal is to find interesting
relationships or associations between items in a dataset. The
Recursive Elimination (ReLim) algorithm is designed to
address some of the performance issues associated with Apriori

using a recursive approach to eliminate infrequent itemsets
efficiently. The basic idea is to identify the most frequent
itemsets first and then recursively eliminate infrequent itemsets
to reduce the search space. The association rule mining method
in ReLim starts by initializing the full transaction database. It
scans and counts the number of occurrences to identify
frequent 1-itemsets. Using them, it creates candidate 2-
itemsets, detects frequent 2-itemsets, and recursively eliminates
infrequent itemsets while producing higher-order candidates.
This technique is repeated iteratively until no more frequent
item sets can be found. The key idea behind ReLim is to
recursively eliminate infrequent itemsets at each step, reducing
the search space and improving efficiency compared to other
algorithms such as Apriori. The algorithm takes advantage of
the fact that if a set of items is infrequent, any superset
containing that set is also infrequent.

A. Proposed PDReLim Algorithm

Implementing the ReLim algorithm in parallel using
PySpark is a good strategy to handle large datasets more
efficiently. PySpark is a Python library for Apache Spark, a
distributed computing framework that allows for parallel and
distributed processing. The parallel implementation of the
ReLim algorithm follows data preparation and data
distribution. Parallelizing the ReLim algorithm involves
distributing the workload across multiple processors or nodes
to enhance the efficiency of frequent itemset mining on large
datasets. The basic steps for the PDReLim are as follows.

1) Data Distribution

Divide the transaction dataset into smaller segments. In a
parallel computing environment, each partition should be
processed independently by individual processors or nodes. In
PySpark, for example, this can be accomplished by
repartitioning the DataFrame.

2) Parallel Frequent 1-Itemset Mining

Assign frequent 1-itemsets to different divisions for
computation. Each partition counts the number of 1-itemsets
that appear locally. Identify frequent 1-itemsets globally by
combining local results.

3) Parallel Candidate Generation

Use the frequent 1-itemsets to generate candidate 2-itemsets
simultaneously. Each division creates candidates locally, which
are subsequently combined globally. Repeat the process for
higher-order itemsets, generating (k+1)-itemsets from common
k-itemsets.

4) Parallel Counting and Recursive Elimination:

Divide the counting and recursive elimination steps into
partitions. Each partition counts the occurrences of candidate
itemsets locally and discards infrequent itemsets. Combine the
results to determine globally frequent itemsets.

5) Iterative Processing

Repeat iteratively until no more frequent itemsets can be
formed or a predetermined maximum iteration is obtained.

Engineering, Technology & Applied Science Research Vol. 15, No. 3, 2025, 22252-22256 22254

www.etasr.com Singla & Gandhi: An Algorithm to Optimize Frequent Pattern Mining in Parallel and Distributed …

6) Association Rule Generation

Generate association rules in parallel using frequent
itemsets.

7) Finalize and Aggregate Results

Combine and finalize findings from many partitions to get a
comprehensive set of frequent items.

8) Optimizations

Optimize performance through data caching, and use
efficiently broadcast variables and appropriate partitioning
schemes.

The steps for implementing the PDReLim algorithm using
PySpark are as follows:

 Step 1: Load the transaction dataset into a PySpark
DataFrame.

 Step 2: Preprocess the data as required for the ReLim
method, ensuring that it is spread among Spark jobs.

 Step 3: Repartition the DataFrame to divide the data among
Spark partitions. This ensures that each division can be
processed independently by many workers.

 Step 4: Define the logic of the ReLim algorithm using
PySpark transformations and actions. This includes
filtering, grouping, and aggregating data to find common
itemsets.

 Step 5: Use PySpark's parallel processing capabilities.
Many PySpark transformations are automatically
parallelized.

Fig. 1. Flowchart of the PDReLim algorithm.

III. RESULTS AND DISCUSSION

The results were based on the support value provided by the
user during the execution. The procedure was carried out on a
single workstation using three datasets from the UCI dataset
repository, namely Mushroom [15], Connect [16], and Chess
[17]. The performance of the PDReLim algorithm was
evaluated based on execution times.

TABLE I. DATASET CHARACTERISTICS

Dataset Items Average length Transactions Size

Chess 75 35 3198 334K
Connect 127 36 1352 15.9M

Mushroom 119 21 8122 557K

A. Experimental Setup

A workstation equipped with an Intel i7 processor, 16 GB
RAM, and a 2 TB SATA 2 hard drive served as the basis for
the implementation configuration. The experiments were coded
on Anaconda3-2023.09-0-Windows-x86_64 with Jupyter and
Spark 3.4.2 with Python on Windows 10. The algorithms were
tested on a single workstation.

B. Results on Mushroom Dataset

The Mushroom classification dataset [15] is a well-known
benchmark. Table II and Figure 2 show the performance of the
PDReLim algorithm using different minimum support and
threshold values on this dataset. The support value is used for
the frequency threshold and to discard infrequent itemsets. The
results of the experimental execution time show that PDReLim
was more efficient than PAriori, PFP-Growth, PFP-max, and
Peclat. On average, the PDReLim algorithm was approximately
six times faster than PApriori, three times faster than PFP-
Growth, and 1.5 times faster than PFP-max.

TABLE II. EXECUTION TIME (MS) ON THE MUSHROOM
DATASET

Support PApriori PFP-Growth PFP-max Peclat PDReLim

10 4838 2278 1126 1089 846
20 648 372 325 440 325
40 325 190 140 120 114
60 282 120 113 106 97
80 240 102 92 84 68

Fig. 2. Performance comparison on the Mushroom dataset.

C. Results on Connect Dataset

Each game state from the Connect-4 board game in the
Connect dataset [16] corresponds to a particular board
configuration. The aim variable specifies the game outcome
(victory, loss, or draw) for the first player, while the

Engineering, Technology & Applied Science Research Vol. 15, No. 3, 2025, 22252-22256 22255

www.etasr.com Singla & Gandhi: An Algorithm to Optimize Frequent Pattern Mining in Parallel and Distributed …

characteristics define the positions of the pieces on the board.
Figure 3 and Table III show the execution times of PApriori,
PFP-Growth, Peclat, PFP-max, and the proposed PDReLim on
the Connect dataset. A high minimum support criterion was
used since all algorithms ran out of memory when the
minimum support was less than 95. The results show that
PDReLim was faster than the other algorithms, being
approximately five times faster than PApriori, four times faster
than PFP-Growth, and two times faster than PFP-max on
average.

TABLE III. EXECUTION TIME (MS) ON CONNECT DATASET

Support PApriori PFP-Growth PFP-max Peclat PDReLim

95 6743 4318 2245 1552 1224
96 2131 1342 2048 1280 1143
97 1235 1022 984 1249 857
98 802 726 553 629 219
99 426 349 248 223 128

Fig. 3. Performance comparison on the Connect dataset.

D. Results on Chess Dataset

The Chess dataset [17] includes several chess-related
datasets, including the King-Rook vs. King-Pawn and Chess
Endgame datasets, recording board configurations and potential
outcomes according to game rules. This dataset contains chess-
related information, such as turns, results, or approaches, and it
is useful for understanding chess-playing principles and
techniques. Figure 4 and Table IV show the performance of
PDReLim, which performed approximately four times better
than PApriori, three times faster than PFP-Growth, and two
times faster than PFP-max on average.

Fig. 4. Performance comparison on the Chess dataset.

TABLE IV. EXECUTION TIME (MS) ON CHESS DATASET

Support PApriori Pfp-growth Pfp-max Peclat PDReLim

10 3245 2243 1549 1027 824
20 2732 895 547 478 274
40 1352 545 575 358 148
60 648 324 286 346 112
80 232 210 154 139 76

IV. CONCLUSION

Τhis study introduces PDReLim, a novel FPM algorithm
designed within the parallel computing framework to enhance
efficiency by using the parallelization scheme of FPM
algorithms. This method focuses on the simultaneous deletion
of infrequent itemsets at each node, acquiring the advantage of
the power of distributed systems or clusters with a large
number of nodes. PDReLim was evaluated in terms of
execution speed and accuracy using the frequently used
datasets Chess, Mushroom, and Connect from the UCI
repository [15-17]. On the Musroom dataset, PDReLim was
around six times faster than PApriori, three times faster than
PFP-Growth, and 1.5 times faster than Pfpmax. On the Connect
dataset, PDReLim was about five times faster than PApriori,
four times faster than Pfpgrowth, and two times faster than
PFP-max. PDReLim outperformed PApriori, PFP-Growth, and
PFP-max approximately four, three, and two times,
respectively. The implementation of PDReLim in PySpark
demonstrated higher performance for iterative algorithms. The
execution for large datasets was optimized using Spark's
advanced capabilities, such as the RDD data structure, in-
memory processing, and shared variables. These results
demonstrate that PDReLim improves both speed and accuracy,
making it a potential solution for PFP mining. Compared to
existing parallel FPM techniques, PDReLim is novel because
of its highly effective parallelization and unique pruning
method for infrequent itemsets. PDReLim redefines the state-
of-the-art in parallel FPM by addressing major computing
constraints and providing a scalable and efficient solution for
large-scale data analysis. The next phase seeks to take
advantage of GPUs' parallel processing capabilities, which
could unleash even bigger performance advantages.

REFERENCES

[1] P. Gupta and V. Sawant, "A Parallel Apriori Algorithm and FP- Growth
Based on SPARK," ITM Web of Conferences, vol. 40, 2021, Art. no.
03046, https://doi.org/10.1051/itmconf/20214003046.

[2] M. J. Zaki, "Parallel and distributed association mining: a survey," IEEE
Concurrency, vol. 7, no. 4, Oct. 1999, Art. no. 14–25,
https://doi.org/10.1109/4434.806975.

[3] S. Biswas, N. Biswas, and K. C. Mondal, "Parallel and Distributed
Association Mining: A Recent Survey," Information Management and
Computer Science, vol. 2, no. 1, pp. 15–24, Sep. 2019,
https://doi.org/10.26480/imcs.01.2019.15.24.

[4] R. Khajuria, A. Sharma, S. Sharma, A. Sharma, J. Narayan Baliya, and
P. Singh, "Performance analysis of frequent pattern mining algorithm on
different real-life dataset," Indonesian Journal of Electrical Engineering
and Computer Science, vol. 29, no. 3, Mar. 2023, Art. no. 1355,
https://doi.org/10.11591/ijeecs.v29.i3.pp1355-1363.

[5] M. R. Al-Bana, M. S. Farhan, and N. A. Othman, "An Efficient Spark-
Based Hybrid Frequent Itemset Mining Algorithm for Big Data," Data,
vol. 7, no. 1, Jan. 2022, Art. no. 11, https://doi.org/10.3390/
data7010011.

[6] C. Fernandez-Basso, M. D. Ruiz, and M. J. Martin-Bautista, "New Spark
solutions for distributed frequent itemset and association rule mining
algorithms," Cluster Computing, vol. 27, no. 2, pp. 1217–1234, Apr.
2024, https://doi.org/10.1007/s10586-023-04014-w.

[7] L. Liu, J. Wen, Z. Zheng, and H. Su, "An improved approach for mining
association rules in parallel using Spark Streaming," International
Journal of Circuit Theory and Applications, vol. 49, no. 4, pp. 1028–
1039, Apr. 2021, https://doi.org/10.1002/cta.2935.

[8] J. J. Flores et al., "Parallel mining of frequent patterns for school records
analytics at the Universidad Michoacana," in 2017 IEEE International

Engineering, Technology & Applied Science Research Vol. 15, No. 3, 2025, 22252-22256 22256

www.etasr.com Singla & Gandhi: An Algorithm to Optimize Frequent Pattern Mining in Parallel and Distributed …

Autumn Meeting on Power, Electronics and Computing (ROPEC),
Ixtapa, Nov. 2017, pp. 1–6, https://doi.org/10.1109/ROPEC.2017.
8261636.

[9] F. Gao, C. Bhowmick, and J. Liu, "Performance Analysis Using Apriori
Algorithm Along with Spark and Python," in Proceedings of the 2018
International Conference on Computing and Big Data, Charleston, SC,
USA, Sep. 2018, pp. 28–31, https://doi.org/10.1145/3277104.3277108.

[10] A. Satty, M. M. Y. Salih, A. A. Hassaballa, E. A. E. Gumma, A.
Abdallah, and G. S. Mohamed Khamis, "Comparative Analysis of
Machine Learning Algorithms for Investigating Myocardial Infarction
Complications," Engineering, Technology & Applied Science Research,
vol. 14, no. 1, pp. 12775–12779, Feb. 2024, https://doi.org/10.48084/
etasr.6691.

[11] S. S. Alzahrani, "Data Mining Regarding Cyberbullying in the Arabic
Language on Instagram Using KNIME and Orange Tools," Engineering,
Technology & Applied Science Research, vol. 12, no. 5, pp. 9364–9371,
Oct. 2022, https://doi.org/10.48084/etasr.5184.

[12] B. Bouaita, A. Beghriche, A. Kout, and A. Moussaoui, "A New
Approach for Optimizing the Extraction of Association Rules,"
Engineering, Technology & Applied Science Research, vol. 13, no. 2,
pp. 10496–10500, Apr. 2023, https://doi.org/10.48084/etasr.5722.

[13] D. J. I. Raj, V. S. Radhakrishnan, M. R. Reddy, N. S. Selvan, B.
Elangovan, and M. Ganesan, "The Projection-Based Data
Transformation Approach for Privacy Preservation in Data Mining,"
Engineering, Technology & Applied Science Research, vol. 14, no. 4,
pp. 15969–15974, Aug. 2024, https://doi.org/10.48084/etasr.7969.

[14] M. Sinthuja, S. Pravinthraja, B. K. Dhanalakshmi, H. L. Gururaj, V.
Ravi, and G. Jyothish Lal, "An efficient and resilience linear prefix
approach for mining maximal frequent itemset using clustering," Journal
of Safety Science and Resilience, vol. 6, no. 1, pp. 93–104, Mar. 2025,
https://doi.org/10.1016/j.jnlssr.2024.08.001.

[15] "Mushroom." UCI Machine Learning Repository, 1981,
https://doi.org/10.24432/C5959T.

[16] J. Tromp, "Connect-4." UCI Machine Learning Repository, 1995,
https://doi.org/10.24432/C59P43.

[17] R. Quinlan, "Chess (King-Rook vs. King-Knight)." UCI Machine
Learning Repository, 1983, https://doi.org/10.24432/C56W2G.

