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ABSTRACT 

This paper aims to develop a practical Adaptive Neural Fuzzy Inference System (ANFIS) for estimating 

carbon steel's Atmospheric Corrosion Rate (ACR). The ANFIS model is developed using 125 datasets. The 

input variables of the ANFIS model include average Temperature (T), average Relative Humidity (RH), 

total Rainfall (Rf), Time of Wetness (TOW), and average Chloride Ion (Cl-). The output variable of the 

Machine Learning (ML) model is the ACR value. The results of the proposed model are compared to those 

of the literature. The comparisons reveal that the ANFIS model established in this study outperforms the 

existing equations in predicting ACR. Furthermore, a Graphical User Interface (GUI) is developed for 

practical use in predicting the ACR of carbon steel. 

Keywords-steel corrosion rate; adaptive neural fuzzy inference system; GUI; machine learning   

I. INTRODUCTION  

The estimation of atmospheric corrosion has been the 
subject of many studies worldwide. Authors in [1] presented a 
deterioration model and assessed metallic bridges that have 
been corroded by the atmosphere. Authors in [2, 3] addressed 
the atmospheric corrosion process of metals in the context of 
different environmental conditions. Authors in [4-7] considered 
the impact of relative humidity on atmospheric corrosion. 
Authors in [8] established the effects of temperature on 
atmosphere corrosion. Authors in [9] calculated the atmosphere 
corrosion rate as a function of the time of wetness. The impact 
of rainfall on the rate of atmospheric corrosion was 
investigated in [10, 11]. It has been found that the most 
prevalent and important atmospheric corrosive agents are Cl� 
from the sea and Sulphur Dioxide (SO2) [12-15]. Authors in 
[16] proposed a model for predicting atmospheric corrosion 

that considered exposure time, temperature, humidity, wetness 
time, and pollutant concentration. The ACR model can be a 
basic linear [17, 18], a basic log-linear [18-21], or a dose-
response function [22-24], demonstrating quantitative 
correlations of the environmental influences on the corrosion 
process. Empirical equations to calculate the ACR were also 
proposed in [19, 21, 25]. However, these equations only 
considered a few input parameters, which are Cl� , SO2, and 
TOW. It should be noted that the atmospheric corrosion 
process is influenced by many external factors of corrosion 
such as humidity and temperature and pollutant factors. 

The ANFIS has been recently employed as the primary way 
to increase the volume and diversity of datasets [26-30]. 
ANFIS is a hybrid of Artificial Neural Networks (ANNs) and 
fuzzy inference that is commonly used to handle complicated, 
nonlinear problems in various engineering fields. The Sugeno 
fuzzy model, first proposed in [31], served as the foundation 
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for this tool. Modeling nonlinear functions, predicting chaotic 
time series, and identifying nonlinear modules in the online 
control system are all done with the ANFIS architecture in 
simulations [32]. Authors in [33] used ANFIS to predict the 
axial compression capacity of steel columns with oval hollow 
sections. However, the application of ANFIS to predict the 
ACR of steel has not been considered so far. The purpose of 
this study is to develop a practical ANFIS model for predicting 
the ACR of carbon steel. The ANFIS models were trained 
using a total of 125 test datasets from the literature. It should be 
noted that the datasets employed in this study focus on the pre-
engineering steel structures in the industrial zones. 
Correspondingly, the input variables of the ANFIS model 
include average T, average RH, total Rf, TOW, and Cl�.  The 
ACR of carbon steel is the ANFIS model's output variable. The 
model’s proposed results are compared with the literature. The 
comparisons showed that the ANFIS model established in this 
study is more accurate than the existing equations in predicting 
the ACR of carbon steel. Furthermore, a GUI is developed to 
compute the ACR of carbon steel. 

II. DATA COLLECTION 

A total of 125 experimental ACR datasets were collected 
from [34-36], and from our own estimated or converted values. 
It should be noted that 79 datasets were adopted from [34], 
while 30 and 16 data samples were used from [35] and [36], 
respectively. Experimental tests were performed in various 
locations from North to South Vietnam. Five different 
environmental properties that can potentially affect the value of 
the ACR are the input parameters of the ANFIS model, 
including T, RH, Rf, TOW, and Cl�. The ACR of carbon steel 
is the ANFIS model's output variable. The range and statistical 
features of the test data are summarized in Table I, and the 
distribution of the parameters considered is shown in Figure 1. 
The distributions of the input parameters of the dataset are 
displayed in Figure 1. The statistical properties of the 
experimental results are described in Table I, where five input 
variables, numbered from X1 to X5, are considered for ANFIS 
model performance. 

TABLE I.  DESCRIPTIVESCRIPTIVE STATISTICS FOR THE 
DATA 

Input 

variable 
T (X1) 

RH 

(X2) 
TOW (X3) ��� (X4) Rf (X5) � (output) 

 (°C) (%) (hrs) (mg/m2.day) (mm) (g/m2) 

Min 19.03 69.15 3006.0 0.41 999.5 89.8 

Mean 24.55 79.45 4699.3 7.99 1533 228.7 

Max 29.98 89.71 6359.0 30.50 3007 355.9 

SD 3.11 5.83 875.6 5.15 337.5 61.9 

COV 0.13 0.07 0.19 0.64 0.22 0.27 

 

  

  

  

Fig. 1.  Histograms of the consideted datasets. 

III. EMPIRICAL FORMULAS FOR CALCULATING 

THE ACR OF CARBON STEEL 

The current study presents the existing corrosion rate 
calculation formulas. The ACR of carbon steel was calculated 
using three common formulas, proposed in [19, 21, 25], which 
are listed in Table II. 

TABLE II.  EMPIRICAL EQUATIONS FOR CORROSION RATE 
OF STEEL 

No. Ref. Formulas Eq. 

1 [19] K 
 a � b. ln�SO�� � c. ln�Cl�� � d. ln�TOW� (1) 

2 [25] K 
 0.31�SO�� � 0.57�Cl�� � 0.31�TOW� (2) 

3 [25] K 
 0.30�SO�� � 0.69�Cl�� (3) 

TOW is the time of wetness (hrs), SO2 is the average sulfur dioxide deposition rate 

(mg/m2.day), Cl� is the average chloride ion (mg/m2.day) 

 

IV. MACHINE LEARNING MODEL 

In the ANFIS models, the standard input and output 
variables for training and testing were normalized in a range of 
0 to 1, according to (4): 

X� 
 ������ �
���!"���� �    (4) 

where X  is the data test sample, X� is the normalized data 
sample, and X#$%  and X#&'  are the minimum and maximum 
values of the parameters under consideration. The coefficient 
of determination (R

2
) and Root Mean Square Error (RMSE) are 

utilized to evaluate the performance of the ANFIS models. The 
definitions of these indicators are expressed by: 

R� 
 1 ) *∑ �,��-��./�01
∑ �,��-2�./�01

3    (5) 

RMSE 
 789�:∑ �t$ ) o$���$=9    (6) 

where t$ and o$ represent the target and output of the i,? data 
point, respectively, o@ is the mean of the output data samples, 
and N is the total number of datasets. The distribution of data, 
such as the training and testing datasets, as well as their 
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structure and clusters have a significant impact on the ANFIS 
model precision. Therefore, a reliable technique is proposed for 
the appropriate data to be obtained. Six training-test ratios were 
tested against 54 ANFIS models. R

2
 and RMSE values were 

used to find the best model. The proper structure is chosen 
based on the input data, input and output membership 
functions, fuzzy rules, and the number of membership 
functions. The ANFIS design is made up of five main levels 
[31], as shown in Figure 2. 

 

 

Fig. 2.  The ANFIS structure for two input variables. 

 
Fig. 3.  Ranking of 54 ANFIS models. 

TABLE III.  ANN PERFORMANCE AND STATISTICAL 
PROPERTIES  

MFs Parameters 
Inputs 

BCD BED BFD BGD BHD 

MF1 
I 0.0975 0.0826 0.1673 0.0818 0.0286 

J 0.2241 0.5595 0.8719 0.5137 0.0292 

MF2 
I 0.0277 0.0844 0.0974 0.1687 0.0229 

J 0.7979 0.6466 0.3976 0.5346 0.1355 

MF3 
I 0.1322 0.1940 0.1748 0.0806 0.1284 

J 0.4857 0.0487 0.1858 0.1319 0.9159 

MF4 
I 0.1651 0.1128 0.0202 0.0248 0.0724 

J 0.7054 0.2776 0.5584 0.8567 0.8273 

MF5 
I 0.0720 0.0729 0.0865 0.0699 0.1088 

J 0.7651 0.4714 0.2925 0.4629 0.2597 

MF6 
I 0.1207 0.0168 0.0429 0.1875 0.1007 

J 0.1797 0.0917 0.3170 0.6144 0.7090 

 

The six training ratios include 0.60/0.40 (ANFIS-01), 
0.65/0.35 (ANFIS-02), 0.70/0.30 (ANFIS-03), 0.75/0.25 
(ANFIS-04), 0.80/0.20 (ANFIS-05), and 0.85/0.15 (ANFIS-
06). The number of clusters ranged from 2 to 10. The ranking 
of the tested ANFIS models is summarized in Figure 3. The 
Gaussian membership function parameters and shapes of the 

corresponding ANFIS models are depicted in Table III and 
Figure 4, respectively. 

 

  

  

 
Fig. 4.  Membership functions for input variables. 

V. RESULTS AND DISCUSSION 

Figures 5-7 illustrate the comparison of the ANFIS model 
results with those from the literature. The comparison shows 
that the inaccuracies are minor, with most of them being less 
than 0.25. These results also emphasize that ML models, such 
as ANNs or ANFIS, are superior in predicting engineering 
problems [37-39].  

 

  

Fig. 5.  Training data performance of ANFIS-01 model. 

  

Fig. 6.  Testing data performance of ANFIS-01 model. 
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Fig. 7.  All data performance of ANFIS-01 model. 

  

Fig. 8.  Comparison of statistical parameters (R2 and RMSE) between  

ANFIS and empirical models. 

  

  

Fig. 9.  Comparison of regressions between ANFIS and empirical models. 

Figures 8 and 9 display the ACR comparisons between the 
ANFIS model and existing methods, and it can be observed 
that the ANFIS model has the highest R

2
 value. Additionally, 

the RMSE of the ANFIS model was shown to be the smallest 
among all models considered in this study. These results 
highlight that the developed ANFIS model is reliable and 
accurate for calculating the ACR of carbon steel. 

VI. GRAPHICAL USER INTERFACE 

This study also developed a GUI tool, based on the ANFIS 
model, for easily calculating the ACR of carbon steel in 
practice utilizing the proposed method. An instance of the GUI 
can be seen in Figure 10. 

VII. CONCLUSIONS 

This study developed a practical Adaptive Neural Fuzzy 
Inference System (ANFIS) for predicting the Atmospheric 
Corrosion Rate (ACR) of carbon steel. The ANFIS model was 
trained in 125 datasets. 

 

Fig. 10.  GUI for calculating the ACR of carbon steel. 

The input variables of the ANFIS model include the 
average Temperature (T), average Relative Humidity (RH), 
total Rainfall (Rf), Time of Wetness (TOW), and average 
Chloride Ion (Cl

-
). The output variable of the Machine 

Learning (ML) model is the ACR value. The proposed model’s 
results were compared the ones from the literature and a 
Graphical User Interface (GUI) tool was developed to quickly 
calculate the carbon steel ACR. 

The ANFIS model predicted the ACR with higher accuracy 
compared to the equations proposed in [18, 19] ISOCORRAG, 
and MICAT. The coefficient of determination (R

2
) value of 

ANFIS was significantly higher than those of other empirical 
formulas. Meanwhile, the Root Mean Square Error (RMSE) 
obtained from ANFIS was smaller than those attained from 
other models.  
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