Unbalanced Distribution Network Cross-Country Fault Diagnosis Method with Emphasis on High-Impedance Fault Syndrome

Balamurali Krishna Ponukumati
School of Electrical Engineering, KIIT Deemed to be University, India
pbmk20031993@gmail.com (corresponding author)

Anil Kumar Behera
School of Electrical Engineering, KIIT Deemed to be University, India
anil.beherafel@kiit.ac.in

Lipsa Subhadarshini
School of Electrical Engineering, KIIT Deemed to be University, India
lipsa.subhadarshinifel@kiit.ac.in

Pampa Sinha
School of Electrical Engineering, KIIT Deemed to be University, India
pampa.sinhafel@kiit.ac.in

Manoj Kumar Maharana
School of Electrical Engineering, KIIT Deemed to be University, India
mkmfel@kiit.ac.in

Arapirala Venkata Pavan Kumar
Department of EEE, Madanapalle Institute of Technology & Science, India
pawanrao82@gmail.com

Received: 16 January 2024 | Revised: 27 January 2024 and 25 January 2024 | Accepted: 7 February 2024
Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.6917

ABSTRACT

Unusual fault scenarios can occur on the utility grid in a power system network. Cross-Country Faults (CCFs) connected to the High-Impedance Fault (HIF) syndrome are more prone to occur in forested areas due to thunderstorms, cyclones, and improper vegetation management and tree pruning. Finding and categorizing CCFs associated with HIF syndrome is a great challenge. This study employed the cross-correlation method to reconstruct the signals produced by CCFs with HIF, which were shown to be complicated, aperiodic, asymmetric, and nonlinear. A decreased sensitivity to random noise means that a given modification might not affect equally all component peaks. This allows for more precise signal recovery. The maximum voltage cross-correlation coefficients were carefully evaluated as distinguishing elements in the development of a suggested fault detection technique. The proposed concept was evaluated on a modified imbalanced IEEE 240 bus system under different case studies. These case studies cover a wide range of scenarios, such as the switching of a capacitor bank, feeder energization, and the effects of nonlinear loads under noisy conditions.

Keywords-Cross Country Faults (CCF); High Impedance Fault (HIF); cross-correlation; slime mould optimization technique; non-negative matrix factorization; method of peak detection
I. INTRODUCTION

The Cross-Country High Impedance Fault (CCHIF) can be described as "high-impedance ground faults happening in separate phases of one circuit at different places at the same time as the fault inception time" in a typical scenario. The main challenges in cross-country faults in transmission/distribution systems are the detection of distance, direction, and phase selection. These faults are simultaneous or evolving problems in the network. The relay may experience failure to function correctly in cases where there is an internal issue within its designated zone or may operate erroneously when a fault occurs outside it. This complexity arises from the unpredictable distribution of zero- and negative-sequence components along the protected line, which is used by the above mentioned functions. This unpredictability affects both solidly grounded systems and those that are either isolated or impedance grounded [1].

Wavelet Transform (WT) is a signal-processing technique that has been widely used for HIF detection [2]. Using a collection of filters, WT can analyze HIF signals at various resolution levels. Artificial Neural Networks (ANNs) and fuzzy expert systems, along with WT, have been employed to detect HIF in distribution networks [3-6]. In [7], a graph theory-based expert systems, along with WT, have been employed to detect HIFs using a Support Vector Machine (RSMSVM) algorithm were used to detect HIFs. Ongoing research is focused on precise identification and classification becomes more intricate.

II. PROPOSED METHOD

A. Feature Extraction based on Time Cross-Correlation

A correlation describes how closely two variables are related. Correlation is helpful because it shows the connection between two variables, which enables users to forecast how a system will behave in the future. In simpler terms, cross-correlation serves as a statistical tool for assessing the extent to which two correlated signals resemble each other. The time series is expected to be organized chronologically with a single-phase cross-correlation-based scheme for identifying cross-country HIFs in the distribution system is proposed. The method involves analyzing the cross-correlation between the voltage under normal operating conditions and the voltage during a faulty state to identify distinctive characteristics in the signature.

The correlogram as a useful tool for data analysis is validated by demonstrating its ability to reduce the effect of uncorrelated random noise. Feature extraction aims to create fresh features from the ones already present in a dataset, thereby decreasing the dataset's size. These refined features should succinctly encapsulate the meaningful information in the original features. Through the amalgamation of the initial features in this manner, a more concise rendition of the original set can be produced.

Recent studies have highlighted the growing use of Support Vector Machines (SVM) for power system fault monitoring. The SVM approach focuses on recognizing system faults, particularly power system instability, using bus voltages, times before and after faults, and generator angles as training data. A trained SVM effectively identified abnormal conditions after disturbance [19]. Other studies evaluated the impact of integrating wind power into the system, employing the Multi-Band Power System Stabilizer (MBPSS) to suppress dynamic oscillations. Simulations confirm MBPSS's ability to enhance system stability under severe faults and high integration of wind farms [20-21]. This study proposes a unique approach to identifying the location of an HIF fault zone in a distribution system. The innovative contributions of this study are:

• A cross-correlation-based scheme for identifying cross-country HIFs in the distribution system is proposed. The method involves analyzing the cross-correlation between the voltage under normal operating conditions and the voltage during a faulty state to identify distinctive characteristics in the signature.

By applying normalization to the cross-correlation function, a Pearson correlation coefficient that is time-adjusted can be obtained:

\[
\rho_{xy}(t_1, t_2) = \frac{K_{xx}(t_1, t_2)}{\sigma_{x}(t_1)\sigma_{x}(t_2)} = \frac{E[(X_{t_1} - \mu_{t_1})(X_{t_2} - \mu_{t_2})]}{\sigma_{x}(t_1)\sigma_{x}(t_2)}
\] (1.b)

Specifically, a stochastic process's normalized cross-correlation is defined as:

\[
\rho_{xy}(t) = \frac{K_{xy}(t)}{\sigma_{xy}} = \frac{E[(X(t_1) - \mu_{x})(Y(t_2) - \mu_{y})]}{\sigma_{xy}}
\] (1.c)

\[
Kx(t) = E[x(t_1)y(t_1 + \tau)] = E[x(t_1 - \tau)y(t_1)] = K_{y}(\tau)
\] (1.d)

where \(\mu_{t_1}\) and \(\sigma_{t_1}\) are the standard deviation of the processes \(X_{t_1}\) and \(Y_{t_2}\), respectively, which are constant over time, and \(K_{yx}\) is the cross co-variance function respectively.
 Frequencies are given by \(v_1 = kT \), where \(k \) can be any integer from 1 to \(N \), and \(v_2 = k(N-1)/2 \), where \(N \) is an odd number. The maximum frequency is the Nyquist frequency \(v_{Nyq} = (N/2)(1/T) \), the minimum frequency is \(v_{min} = 1/T \), and \(T = N(v_2 - v_1)/(N - 1) \). The cross-correlation between 2 signals, \(x(n) \) and \(y(n) \) is given by:

\[
\tilde{R}_{xy}(m) = \begin{cases} \sum_{n=0}^{N} x_{n+m} y_{n} & m \geq 0 \\
\tilde{R}_{xy}(-m) & m < 0 \end{cases}
\]

where \(m \) is equal to 2, 1, 0, 1, 2. Subscript \(xy \) denotes the order in which the two variables are associated, and index \(m \) denotes a parameter that shifts with time. The subscripts are arranged so that \(x \) precedes \(y \) to indicate how one sequence is moved concerning the other. Compared to the equal sampling scenario, the uneven sampling case's window function shapes can account for the significant red-noise leakage shown in the simulations and the increased noise. Using even sampling, standard Fourier analysis results can be recreated, complete with the well-established characteristics of window functions. In the case of representing noise, it can be written:

\[
x(t) = A \cos(\omega t + \theta)
\]

where \(\theta \) is a random variable, \(y(t) \) represents noise, and \(x(t) \) and \(y(t) \) are uncorrelated functions. Then, the autocorrelation coefficient of \(x(t) \) is \(R_x(t) = \frac{A^2}{2} \cos \omega t \). \(R_y(t) \) is the autocorrelation function of noise \(y(t) \). \(R_T(t) \) should be decaying in nature. Hence correlograms are decaying in.

\[
R_T(t) = Z_0 e^{-t/\tau}
\]

After adding \(x(t) \) and \(y(t) \), it becomes:

\[
z(t) = x(t) + y(t)
\]

\[
Z = A \cos(\omega t + \theta) + \text{noise}
\]

\[
R_z(t) = R_x(z) + R_y(t)
\]

If \(x(t) \) contains several frequencies or a small band of frequencies, this band can be recovered from the new signal \(Z(t) \). In this study, the Source Separation Non-Negative Matrices (SSNMF) algorithm was used to remove the significant noise.

B. Reducing Noise

The SSNMF method is represented graphically by a sweep sequence of amplitude spectra. The Frequency-Following Response (FFR) can be more easily seen, and extra noise is eliminated from all recordings thanks to the SSNMF decomposition. The analysis involves examining the patterns of improvement in FFR and reduction in noise as the number of sweeps increases. A model was developed using an exponential curve fit. Pitch processing and neuroplasticity processes during signal interruptions are two possible uses of the SSNMF algorithm on the FFR signal [22]. The machine learning algorithm takes a non-negative input matrix \(A \) and uses it to learn and factorize a smaller matrix \(S \), which serves as the spectral basis, and \(T \), which serves as the information coding.

\[
A_{ij} \approx (ST)_{ij} = \sum_{k=1}^{n} S_{ik} T_{kj}
\]

Here, \(i \) and \(j \) stand for elements across matrix \(A \)'s initial (a flattened frequency-time vector) and secondary (a sequence of amplitude spectrograms) dimensions, respectively. Following this approach, FFR and noise were independently reconstructed, as shown in Figure 1, using the following formulas: multiply the input data matrix \(T \) by their respective \(S \)-\(T \) ratios, and then divide the result by the matrix \(T \).

\[
FFR = \frac{A^{(SSFR(FFR))}}{ST}
\]

\[
Noise = \frac{A^{(Noise(Noise))}}{ST}
\]

The following equation is used to outline the efficiency improvement in the FFR signal (i.e. working of the SSNMF method):

\[
B(n) = B_{dc} e^{(-n/T)} + B_{bc}
\]

In this context, \(B \) represents the performance index, specifically FFR improvement, \(n \) is the total amount of sweeps for each signal, \(B_{dc} \) is the asymptotic amplitude of the fitted curve minus the direct current component, and the constant \(e \) represents Euler's mathematical constant (approximately 2.7182) and denotes the time constant of the fitted curve, indicating the number of sweeps required to reach 63% of the asymptotic amplitude. \(B_{dc} \) refers to the direct current component of the fitted curve, representing the overall elevation of the fitted curve. For noise reduction, an alternative model was employed, showing results that exhibited an increasing trend as the number of sweeps increased.

\[
B(n) = B_{dc} e^{(-n/T)} + B_{bc}
\]

\[
FFR_{	ext{Enhancement}} = 0.254 * (e^{(-n/555}) + 0.005
\]

\[
\text{Noise Reduction for signal} = 20.653 * (1 - e^{(-n/250)}) - 20.991
\]

Fig. 1. Block diagram of source separation using SSNMF algorithm.

C. Method of Peak Detection (MOPD) for Determining QRS

Applying Normal-Exponential-Bernoulli (NEB) and mixture probability models, a brand-new peak identification algorithm was used to analyze extensive two-dimensional electrical signals:

\[
X_i \sim ND(\theta_i + \mu, \sigma^2) \text{ and } \theta_i \sim Exp(\phi)
\]
III. SYSTEM MODELING

A. Modified 240 Node System Modeling

This system consists of three feeders, as shown in Figure 2. Feeder A has 17 nodes, feeder B has 60 nodes, and feeder C has 162 nodes, all receiving power from a 69 kV substation. The major length of this distribution system is 23 miles, and it supplies electricity to more than 1100 people. Transformers are used for secondary supply clients. Real direct data on power consumption (kW) are available through smart meters at different locations based on the slime mould optimization technique. There are two capacitor banks in the 240-bus system. The substation features on-load tap changers at nodes 2038 and 3079. The introduction of photovoltaic (PV) systems supplies electricity to more than 1100 people. Transformers are energized at various inception angles and locations were simulated, with both balanced and unbalanced loads as well as electronic power loads. The signal is generated at time $t = 0.1$ s with a sampling frequency of 2048 Hz, and the calculation is carried out one cycle after the fault event to determine the values of Q, R, and S. In this study, cross-country-HIF and other transients were generated in the 240 bus distribution network on buses 1010, 1015, 2019, 2031, 3022, and 3035. Buses 1037, 1014, 1005, 1003, 1011, 1015, 2012, 2019, 2030, 2024, 2021, 2032, 2042, 2053, 2066, 2041, 2031, 3034, 3005, 3013, 3011, 3027, 3030, 3042, 3049, 3094, and 3067 are the best locations for the monitoring points, which were found using the slime mould optimization technique. At the measurement point, voltage signal correlation was tested under both normal and various transient conditions, such as cross-country faults. The two signals’ cross-correlogram becomes their autocorrelation when everything is working properly. The cross-correlogram produces various waveforms for various types of transients. Figure 3 shows the extraction of features for CCHIF detection on bus 1010.

B. HIF Modeling for Cross Country

A HIF exhibits traits similar to an electric arc, including non-linearity, inconsistency, and recurrence in the fault current signals. Additionally, these signals exhibit the existence of high-frequency components and harmonics. Various studies have proposed various HIF model types. This study considered a 2-diode HIF model, similar to [5]. The model consists of two DC voltage sources (V_p and V_n), two diodes (D_p and D_n), and two resistances (R_p and R_n) that are coupled in an antiparallel fashion. Asymmetric fault currents were produced in the distribution network using several sets of fault resistances R_p and R_n that have different values. When the line voltage is higher than the positive DC voltage (V_p), the fault current begins to flow in the direction of the ground. On the contrary, it returns from the ground when the line voltage is less than the negative DC voltage (V_n). If the phase voltage falls within the range of V_p and V_n, there is no fault current. This study considered three diverse situations built on three different voltage and resistance values, as shown in Table I. Variation is necessary to achieve the various HIF behaviors and their effects on the electrical power distribution system [6]. When HIFs occur in a feeder, both negative and zero sequence currents are introduced. HIFs are mostly line-to-ground faults.

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>HIF parameter values</th>
<th>V_p (V)</th>
<th>R_p (Ω)</th>
<th>V_n (V)</th>
<th>R_n (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition 1</td>
<td>3588</td>
<td>208</td>
<td>3847</td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>Condition 2</td>
<td>6180</td>
<td>245</td>
<td>6155</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>Condition 3</td>
<td>8092</td>
<td>270</td>
<td>9358</td>
<td>290</td>
<td></td>
</tr>
</tbody>
</table>

IV. RESULTS AND DISCUSSION

To validate the proposed algorithm for the detection of cross-country HIFs, different capacitor bank switching feeder energization at various inception angles and locations were simulated, with both balanced and unbalanced loads as well as electronic power loads. The signal is generated at time $t = 0.1$ s with a sampling frequency of 2048 Hz, and the calculation is carried out one cycle after the fault event to determine the values of Q, R, and S. In this study cross-country-HIF and other transients were generated in the 240 bus distribution network on buses 1010, 1015, 2019, 2031, 3022, and 3035. Buses 1037, 1014, 1005, 1003, 1011, 1015, 2012, 2019, 2030, 2024, 2021, 2032, 2042, 2053, 2066, 2041, 2031, 3034, 3005, 3013, 3011, 3027, 3030, 3042, 3049, 3094, and 3067 are the best locations for the monitoring points, which were found using the slime mould optimization technique. At the measurement point, voltage signal correlation was tested under both normal and various transient conditions, such as cross-country faults. The two signals’ cross-correlogram becomes their autocorrelation when everything is working properly. The cross-correlogram produces various waveforms for various types of transients. Figure 3 shows the extraction of features for CCHIF detection on bus 1010.

![Fig. 2. The IEEE modified 240 bus system.](image)

![Fig. 3. Extraction of features for CCHIF detection at bus 1010:](image)
similarly is at its highest when the estimated cross-correlation value is maximized, and the windows' length is recalculated after taking into account the appropriate latency. This method guarantees that the subtraction of similar samples yields the correct result.

Figure 4 shows the correlograms for some example studies. The CCHIF correlogram under condition 3 in Figure 5(a) was generated at 0.02 s on bus 1010 and observed from bus 1013. Figure 4 (b, c) shows the correlograms of the capacitor bank switching and the feeder energization on bus 1015 at 0.02 s, respectively. Figure 5 shows that the Q, R, and S points are indistinguishable in scenario c. Therefore, the associated signal is subjected to MOPD action, followed by SSNMF operation to produce the waveforms shown in Figure 5. From this figure, three separate values can be obtained for Q, R, and S, which were used for CCHIF detection.

![Fig. 4. Cross-correlogram of CCHIF: (a) CCHIF, (b) switching of the capacitor bank, and (c) energization of the feeder.](image)

![Fig. 5. Cross-correlogram post MOPD and filter operation to obtain Q, R, and S points: (a) CCHIF, (b) signal for switching the capacitor bank.](image)

V. METHOD VERIFICATION UNDER DIFFERENT CONDITIONS

A. Influence of Noise

The voltage and current signals in real-time systems are always contaminated with noise. Unwanted electrical impulses that interfere or distort with an original (or desired) signal are known as noise or interference. As a result, the effectiveness of the suggested approach for cross-country HIF detection was investigated in noisy environments. The entire recorded signal contains power system noise, which has a normal probability distribution. The Signal-to-Noise Ratio (SNR) that states this noise, is given by:

$$SNR_{db} = 20 \log_{10} \left(\frac{A_{signal}}{A_{noise}} \right)$$

B. CCHIF Fault Detection Influence of Power Electronics Load

Power electronics interfaced nonlinear loads, such as time-varying harmonics in distribution networks, are now widely employed by both home and industrial customers. The proposed solution was tested with a non-linear load to assess its performance. A 6-pulse converter bridge that provides a DC load of 650 kW at 3.6 kV and is coupled at various points of the 240-bus distribution network was used to design the non-linear load.

VI. CONCLUSIONS

This study introduces a reliable correlation-based method for detecting cross-country HIFs in distribution networks. The proposed method was effective in identifying this type of fault under various conditions, including capacitor bank switching, load switching, feeder energization, and unbalanced load. Unlike complex approaches, this technique analyzes voltage signals at a single monitoring point and performs correlation operations with those signals in typical scenarios. The identification of the faulty phase during cross-country HIFs relies on just three features extracted from the cross-correlogram of voltage signals. To streamline the feature extraction process, a cross-correlation-based method was used, which helps mitigate the impact of random uncorrelated noise in the signal. The slime mould optimization technique was used to determine the optimal monitoring point locations to identify the faulty bus in the network. The efficiency of the proposed method was verified on a real-time platform, and its simplicity was highlighted by its lack of reliance on distributed parameters, artificial intelligence techniques, or time synchronization with monitoring devices.

REFERENCES

