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Abstract— The Traveling Salesman Problem (TSP) is an integer 
programming problem that falls into the category of NP-Hard 
problems. As the problem become larger, there is no guarantee 
that optimal tours will be found within reasonable computation 
time. Heuristics techniques, like genetic algorithm and simulating 
annealing, can solve TSP instances with different levels of 
accuracy. Choosing which algorithm to use in order to get a best 
solution is still considered as a hard choice. This paper suggests 
domain reduction as a tool to be combined with any meta-
heuristic so that the obtained results will be almost the same. The 
hybrid approach of combining domain reduction with any meta-
heuristic encountered the challenge of choosing an algorithm that 
matches the TSP instance in order to get the best results. 
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I. INTRODUCTION  

The traveling salesman problem (TSP) is a problem of 
“finding the shortest possible route given a list of cities and the 
distances between each pair of cities, such that the route visits 
each city exactly once and returns to the origin” [1]. The 
increasing numbers of vehicles and the fluctuation of oil prices 
as well as the need to reduce costs, ignited the search to 
optimize the travel of sales personnel and the daily delivery and 
transport plans. Accordingly, the vehicle routing problem 
(VRP) and the TSP are important problems in the field of 
customer services and in the distribution network. They played 
a significant role in reducing the costs and time and hence 
improving the service. This paper considers a symmetric TSP, 
where a number of cities (or customers) is given as well as the 
distances between each pair of these cities, and the problem is 
to find the shortest possible routes that visits each city exactly 
once and return to the origin.  

This problem was raised, with trial for a mathematical 
formulation, in the early 19th century in the UK [2]. A general 
form of the TSP mathematically tackled for the first time by 
Karl Menger at 1930. Karl Menger was able to define the 
problem and to find out that the nearest neighbor heuristic 
would not provide the optimal solution. Since then, the TSP is 

being a very popular subject and many efforts are carried out to 
determine the optimal solution for certain variants. In the last 
years, the TSP problem approach has been extended and 
modified to provide special solutions for other fields in life, 
such as for DNA fragmentation or for finding the optimal insert 
sequence of SMD components and optimal soldering points 
sequence. 

Over the past decades, TSP instances had been encountered 
using too many types of approaches. Techniques like exact 
methods, classical and meta-heuristics had been applied to 
solve TSP instances with various dimensions. It is a fact that 
choosing between exact and heuristics approach to solve TSP is 
an easy choice as it is governed by the accuracy vs time 
concept. Choosing between classic and meta-heuristics is also 
an easy choice for the same reason. On the other hand, 
choosing the right meta-heuristics to solve the TSP could be 
very challenging as some of them are working excellently on 
one problem and fail to provide a good solution on others [3]. 

This paper surveys the effect of domain reduction on the 
final results of using genetic and simulating annealing 
algorithms to solve TSP. The objective is to minimize the 
domain of the problem in order to minimize the search 
iterations for the algorithms and getting close (if not similar) 
results.     

II. MATHEMATICAL FORMULATION  

This paper consider the following mathematical formulation for 
the TSP [4]: 

For i = 0, ..., n, let iu be an artificial variable, and finally 

take ijc  to be the distance from city i to city j.  

Min  
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Where (1) is the objective function. (2) implies that iu  are 

integers, (3) is to get sure that each city visited at most once, 
(4) serves the fact that all cities must be visited, (5) is to get 
sure that there is only one tour for the problem and (6) implies 
that the value of x is 1 if the path goes from city i to city j and 0 
otherwise. 

III. META-HEURISTICS 

The quality of the solution obtained by any of the 
metaheuristic algorithms is usually much better than the ones 
obtained by the classical algorithms because the metaheuristic 
algorithms explore all the solution space deeply. However, 
metaheuristics take more time than the classical heuristics. The 
following elaborates two popular metaheuristics: 

A. Simulating Annealing (SA) [5] 

SA is a stochastic relaxation technique that has its origin in 
statistical mechanics. Formerly, the process of crystallizing a 
solid by heating it to a high temperature and gradually cooling 
it down motivated the development of SA.  

Assuming ( ) ( )
t

f x f xD= - , where ( )f x  is the best 

value for the objective function found so far, and ( )
t

f x  is the 

value of the objective function at iteration t. The solution will 
be accepted as a new current solution if 0D£ . If 0D> , any 

moves with a probability of te-D  increase of the objective 
function are accepted, where T is the temperature and its value 
varies from large to close to zero. The values of T are 
controlled by a cooling schedule that specifies the temperature 
values at each stage. In the literature it was proposed that a 

solution x is drawn randomly in ( )
t

N x  at t iterations. If 

( ) ( )
t

f x f x£ , then xt+1 is set equal to x; otherwise 

1
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where pt is a decreasing function of t and of ( ) ( )
t

f x f x- . 

With the pre-specified values for π1, π2 and ki the SA stops 
when: 

• The value f* has not decreased by π1% for at least k1 
consecutive cycles of T iterations. 

• The number of accepted moves has been less than π2% 
of  T  for k2 consecutive cycles of  T  iterations. 

• Ki  of  T iterations have been executed 

The application of SA to solve TSP is to take an initial 
solution to the problem and consider it as the best solution. A 
parallel search for removing and adding cities from the routes 
follows. The adding and removing is a random process within 
the above mentioned boundaries, updating the best solution as 
the total distance is reduced. 

B. Genetic Algorithm (GA) [6] 

Coming from a biological background for simulation of the 
evolution using the gens, the algorithm represents a solution as 
a population of chromosomes: 

 11
1

1
,, NXXX   

N here is the number of vertices (or cities). To proceed, the 
following three steps are carried out: 

• Two “parent” chromosomes from X 1  are selected. 

• These parent chromosomes are used to produce 
offsprings that forms the next generation. 

• Each offspring is then mutated randomly utilizing a 
small probability. 

The above three steps will be repeated K times for each 
iteration t=1,…,T, where 2Nk   and T is the number of 
generations. The next step will be applied: 

Xt+1 from Xt. This is achieved by removing the 2k worst 
solution in Xt (the ones with the furthest distances) and 
replacing them with 2k new offsprings. Additionally, to apply 
the GA to solve TSP, two points have to be considered: 

• Initial population constructor. Which means initial 
solution to the problem has to be provided  

• Determine fitness, crossover and mutation operators. 
Which means that a criterion for improving the 
solution (new iteration) has to be specified.  

The GA will be repeated for a pre-specified number of 
iterations. 

C. Constraint Programming (CP) [7] 

Constraint Programming techniques have been developed 
since early 1990s. They have two common features: 

• constraint propagation  

• distribution (labeling) connected with search. 

Constraint propagation will lead to Constraint 
Programming (CP). It would automatically remove from the 
domain of variables all values that do not fulfill constraints. Let 
us consider these examples: 

• Let X-Y=3 or X<Y. These 2 given constraints would 
provide information about the values of the variables X 
and Y, but it is in a poorly usable form. CP will work 
to simplify such information. If we have, beside X-
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Y=3, another information that X+Y=7, then the 
solution would be: X=5 and Y=2. This simplification 
will be carried out by a special algorithm, the 
constraint solver, a fixed part of the CP. 

• If we have two variables x and y, with x∈{1..5} and y
∈{1..6}. We introduce here a constraint with x>y+1, 
then the constraint propagation will reduce the domains 
to the following values:  x∈{3, 4, 5} and y∈{1, 2, 3} 
because values {1, 2} from x domain do not fulfill the 
constraint x>y+1 and the y values {4, 5, 6} also 
conflict with the given constraint. 

• In the last example, if we add another constraint 
x+y=6, then none of the values can be removed. 

Usually we don’t have the joy of such simple constraints. 
They are often connected with each other. Therefore, constraint 
propagation would not remove all values that are in conflict 
with all constraints and its performance is measured as a trade-
off between number of removed values and execution time. 

Actually, constraint propagation does not lead to the 
solution (example above). This explains the need to always add 
a distribution connected with the search. Distribution is based 
on incorporation of an additional constraint, often it is a 
constraint about equality of one variable to one value. A major 
task of the distribution is to find or choose a proper variable 
and a suitable value. As soon as this is achieved, a consistency 
is checked and there will be three possibilities: 

• a solution is found 

• variables domains are narrowed, but there is no unique 
solution, so distribution is conducted with another 
variable 

• the additional constraint is inconsistent with other 
constraints, so the backtrack is made and from the 
chosen variable domain a chosen value is removed. 

This is an iterative process and it is called “search”. Search 
is responsible for stopping after finding the first solution or 
some number of solutions or all solutions. Search forms a 
search tree, where each node is a state of variables. 

IV. COMPUTATIONS 

This paper applies SA and GA to 12 benchmark problem 
from the TSP library [8]. The size of each problem increase by 
almost a factor of 2 in order to survey the effect of the 
reduction. TSP instances that considered in this paper are 
shown in Table I. 

The distance between the cities were calculated and placed 
in to a symmetric distance (cost) matrix then:  

R*=R- R
100

s
            (7) 


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otherwise

5001problem  theof size750  theif ...0,20,40,60

750problem  theof size250  theif ...0,15,30,45

250problem  theof size  theif ...0,10,20,30

s
          (8) 

R is the maximum distance in the distance matrix. All the 
distance values above R* should be neglected. The above 
domain reduction technique suggests that the arcs between far 
cities will not be considered. The solution starts by taking all 
distances, then based on the size of the problem the domain 
will be reduced by 10% from the maximum distance then 20% 
and so on until no feasible solution can be obtained (in case the 
size of the problem less than or equal to 250). The solution 
considered in this case will be the one with the least distance or 
cost. Table II provides the results of applying genetic algorithm 
and simulating annealing to solve TSP combined with domain 
reduction. 

TABLE I.  TSP INSTANCES AND DIMENSION 

Problem Number Size Description 
1 29 bays29 
2 48 gr48 
3 101 eil101 
4 202 gr202 
5 493 d493 
6 1002 pr1002 
7 2103 d2103 
8 3038 pcb3038 
9 7397 pla7397 
10 13509 usa13509 
11 33810 pla33810 
12 85900 pla85900 

 

TABLE II.  THE RESULTS OF THE IMPROVED SA AND GA 

Problem 
No. 

SA GA Optimal 
Solution 

Improved 
SA 

Improved 
GA 

1 2020 2020 2020 2020 2020 

2 5046 5046 5046 5046 5046 

3 668 670 629 629 629 

4 42518 45922 40160 40992 41374 

5 54229 73417 35002 37898 379524 

6 285534 348604 259045 261409 261409 

7 103250 127831 80450 91693 91332 

8 169782 183421 137694 148972 148972 

9 318864
58 

418940
01 

23260728 23853401 23853401 

10 351098
14 

357102
28 

19982859 22014415 22014415 

11 713231
37 

751151
03 

66048945 66829102 66829102 

12 200219
623 

265892
412 

14238264
1 

14792011
4 

14792011
4 

 
Graphically the obtain results of Table 2 can be illustrated 

as shown in Figures 1 to 6. 
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Fig. 1.  TSP Instances 1-4 Solved by GA and SA 

 

 
Fig. 2.  TSP Instances 5-8 Solved by GA and SA 

 

 
Fig. 3.  TSP Instances 9-12 Solved by GA and SA 

 

 
Fig. 4.  TSP Instances 1-4 Solved by Improved GA and SA 

 
Fig. 5.  TSP Instances 5-8 Solved by Improved GA and SA 

 
Fig. 6.  TSP Instances 9-12 Solved by Improved GA and SA 

V. CONCLUSION AND FUTURE WORK 

As Table II suggests, small dimension problems can be 
solved (optimally) sometimes no matter the algorithm applied. 
For medium to large sized problems the solution obtained by 
applying genetic algorithm is very close (if not the same) for 
the solution obtained by applying simulating annealing. In brief 
combining domain reduction with genetic algorithm and 
simulating annealing provides the following important 
advantages: 

• improves the solution for one or both algorithms 

• using either genetic or simulating annealing provides 
similar results once domain reduction is combined with 
the selected algorithm. 

• the domain reduction approached improved the 
accuracy of SA and GA and also minimized the 
searching process iterations for the large size instances.  

In order to acquire the full benefit of using domain 
reduction with meta-heuristics, more well-known algorithms 
should be considered. Algorithms like Tabu search and Ant 
colony should be applied to solve TSP combined with domain 
reduction in the future. Also, a general and more logical 
domain reduction approach should be taken in order to 
minimize the computation time.  
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