
Engineering, Technology & Applied Science Research Vol. 9, No. 5, 2019, 4755-4758 4755

www.etasr.com Adil et al.: Performance Analysis of Duplicate Record Detection Techniques

Performance Analysis of Duplicate Record Detection

Techniques

Syed Hasan Adil

Department of Computer Science,
Iqra University,
Karachi, Pakistan

hasan.adil@iqra.edu.pk

Syed Saad Azhar Ali

Department of Electrical and Electronic Engineering,

Universiti Teknologi PETRONAS,
Seri Iskandar, Malaysia

saad.azhar@utp.edu.my

Mansoor Ebrahim

Department of Computer Science,
Iqra University,
Karachi, Pakistan

mebrahim@iqra.edu.pk

Kamran Raza

Department of Computer Science,

Iqra University,
Karachi, Pakistan

kraza@iqra.edu.pk

Abstract—In this paper, a comprehensive performance analysis

of duplicate data detection techniques for relational databases

has been performed. The research focuses on traditional SQL

based and modern bloom filter techniques to find and eliminate
records which already exist in the database while performing

bulk insertion operation (i.e. bulk insertion involved in the

loading phase of the Extract, Transform, and Load (ETL)

process and data synchronization in multisite database

synchronization). The comprehensive performance analysis was

performed on several data sizes using SQL, bloom filter, and

parallel bloom filter. The results show that the parallel bloom
filter is highly suitable for duplicate detection in the database.

Keywords-duplicate detection; bloom filter; SQL; database

I. INTRODUCTION

Duplicate record detection [1, 2] is a process of identifying
pairs of records that belong to the same entity in one or more
databases. Despite the development of many indexing
techniques like ISAM, B-Tree, Bitmap, and Hash indexing,
still the process of matching two records that belong to the
same entity requires time which is proportional to the number
of existing records. Therefore, an alternative technique is
required to perform duplicate record detection. Duplicate data
detection has very important applications in many critical areas
including databases, distributed databases, and data
warehouses. Data synchronization is a task demanded in a
centralized database in case of standby after a database failure,
or in a distributed database when we have to synchronize
multiple remotely distributed database instances, or even in the
Load part of the Extraction, Transform, and Load (ETL)
process where new data have to be loaded into the database in a
continuous process. Data streams like video, audio, etc. are
some of the sources of big data which we want to process in
real-time. In-stream processing, duplicate data detection is one
of the most important tasks but at the same time it is very

challenging due to the amount of data that continuously arrive
at high speed. We can deal with these challenging requirements
through a more robust technique like bloom filters which have
the potential to perform better than the traditional duplicate
detection techniques used in relational databases. Therefore, in
this paper, we will deeply investigate the application of bloom
filters in order to identify duplicate records in databases,
distributed databases, and data warehouses. The main objective
of the paper is to implement in SQL, bloom filter, and parallel
bloom filter duplication detection techniques and to decide
which one is the most appropriate for duplication detection.

II. RELATED WORK

Bloom filter [3] is a probabilistic data structure developed
in 1970. Bloom filters are primarily based on hash functions.
Bloom filters are a space-efficient data structure based on the
computation of several hash functions. A Bloom filter has zero
probability of false negative, but it can have more than zero
probability of false positive (though it is possible to minimize
the false-positive probability to zero depending on parameter
selection). False-positive means that the filter may identify a
new entry as already existing, even though this is not true. In
addition to highly space-efficient, operations like Insert and
Search are very fast in bloom filters. Deletion is generally not
allowed in the bloom filters due to the additional required
amount of work. While deciding about the bloom filter, one
must consider a tradeoff between the space and false positive.
So, if space is more important, then the bloom filter is an ideal
choice (with a very little chance of false-positive). However, if
even a little chance of false positives cannot be tolerated, then,
in that case, one cannot use the bloom filter. Many different
variants of the original bloom filters have been proposed which
include but are not limited to counting bloom filter [4], d-Left
counting bloom filter [5], compressed bloom filter [6],
bloomier filter [7], space-code bloom filter [8], dynamic bloom

Corresponding author: Syed Hasan Adil

Engineering, Technology & Applied Science Research Vol. 9, No. 5, 2019, 4755-4758 4756

www.etasr.com Adil et al.: Performance Analysis of Duplicate Record Detection Techniques

filter [9], etc. The applications of bloom filters [10, 11] include
but are not limited to spell checking, collaboration in P2P
networks, resource and packet routing, cache optimization,
URL shortening, video recommendation, string matching, spam
filtering, DoS and DDoS detection, anomaly detection, etc. In
this research, we applied SQL, bloom filter, and parallel bloom
filter to perform duplicate detection while performing bulk
insertion operation in database, distributed database, and data
warehouse using different numbers of tuples (i.e. from
thousand to one million tuples in the tables as well as for the
bulk operation) in the table.

III. PROPOSED METHODOLOGY

The discussion in the previous section acknowledged the
importance of duplication detection in databases, distributed
databases, and data warehouses while importing bulk data.
Duplication detection in large databases is a very
computational hungry task because each inserting record needs
to be compared with all the exiting records in the database. It is
important to note that we cannot perform a comparison based
on primary keys because data are coming from various sources.
In this research work, we have implemented three different
approaches (i.e. SQL, bloom filter, and parallel bloom filter) to
compare their performance on duplicate detection using
different number of records (i.e. existing records in the
table/new records to insert in the table ratio equal to
1000/1000, 10000/10000, 100000/100000, and
1000000/1000000). The overall process flow of each approach

is described in Figure 3 for SQL based approach, Figure 4 for
bloom filter, and Figure 5 for the parallel bloom filter. The
Table used to perform duplicate detection is shown in Figure 1,
while the script used to generate data is shown in Figure 2. The
different steps of each approach are described below:

CREATE Table Students

(

 Stud_id int identity primary key,

 Stud_name nvarchar(25),

 Stud_address nvarchar(100),

 Stud_country nvarchar(25)

)

Fig. 1. Schema of the table used for analysis

Declare @Id int

Declare @TotalRecords int

Set @Id = 1

Set @TotalRecords = 1000

While @Id <= @TotalRecords

Begin

insert into Students values

('Student - ' + CAST(floor(RAND() * 100) as nvarchar(25)),

'Address - ' + CAST(floor(RAND() * 100) as nvarchar(100)),

'Country - ' + CAST(floor(RAND() * 100) as nvarchar(25)))

 Set @Id = @Id + 1

End

Fig. 2. Script used to generate random data

Fig. 3. The workflow of duplication detection using SQL based approach

Fig. 4. The workflow of duplication detection using bloom filter-based approach

Engineering, Technology & Applied Science Research Vol. 9, No. 5, 2019, 4755-4758 4757

www.etasr.com Adil et al.: Performance Analysis of Duplicate Record Detection Techniques

Fig. 5. The workflow of duplication detection using parallel bloom filter-based approach

A. SQL Based Approach

The different steps involved in finding duplicate records
using SQL based approach are described below:

• Step 1: In this step, data from the import file are loaded by
the application.

• Step 2: In this step, the next record is fetched from the file.
If a record exists, then move to Step 3 otherwise end the
process.

• Step 3: In this step, all columns of the record are
concatenated without key column.

• Step 4: In this step the record (i.e. concatenated columns)
has been matched with all existing records (i.e. each record
with concatenated columns) in the table for a duplicate
check using the Where clause in the Select statement.
Figure 6 shows the concatenated column query.

• Step 5: In this step, if the record does not exist, then insert it
into the actual table. Otherwise, insert into the duplicate
database. Go back to step 2.

select * from Students where concat(stud_name, stud_address,

stud_country) = ‘Name,Address,country’

Fig. 6. The select statement

B. Bloom Filter-Based Approach

The steps involved in finding duplicate records using the
bloom filter-based approach are described below:

• Steps 1-3, 5 are the same as in the SQL based approach.

• Step 4: In this step the records (i.e. concatenated columns)
are matched with all existing records (i.e. each record with
concatenated columns) in the bloom filter without involving
the source table in the search process. The bloom filter must
be updated for each record inserted into the source table.
So, the bloom filter always reflects the current state of the
table in the database.

C. Parallel Bloom Filter-Based Approach

The steps involved in finding duplicate records using
parallel bloom filter-based approach are described below:

• Steps 1-3, 5 are the same as in the SQL and bloom filter-
based approaches.

Step 4: This step is like step 4 of bloom filter, but the only
difference is that the records (i.e. concatenated columns) are
matched in parallel with all existing records (i.e. each record
with concatenated columns) in the bloom filter. This helps in
utilizing multiple cores of the host machine and reduces the
time required to match all the records.

IV. RESULTS AND DISCUSSION

The workflow of the three approaches used in this paper is
presented in Figures 3-5. All three approaches were used to
detect duplicates in four different cases. In case I, the table
contains 1000 records and the bulk insert file also contains
1000 records (950 unique and 50 duplicate records). In case II,
the table contains 10000 records and the bulk insert file also
contains 10000 records (9800 unique and 200 duplicate
records). In case III, the table contains 100000 records and the
bulk insert also contains 100000 records (95000 unique and
5000 duplicate records). In case IV, the table contains 1000000
records and the bulk insert file also contains 1000000 records
(850000 unique and 150000 duplicate records). The obtained
results (i.e. process time, and time) after the execution of all
combination of analysis are presented in Table I.

TABLE I. EXPERIMENTAL RESULTS FOR DUPLICATION DETECTION

Number of Records Technique
Time

(H:min:s.ms)

Time

(ms)

Existing: 1000

New: 1000

Unique New: 950

Duplicate New: 50

BF 00:00:00.010 10

Parallel BF 00:00:00.010 10

Query 00:00:09.320 9320

Existing: 10000

New: 10000

Unique New: 9800

Duplicate New: 200

BF 00:00:00.050 50

Parallel BF 00:00:00.030 30

Query 00:02:26.880 146880

Existing: 100000

New: 100000

Unique New: 95000

Duplicate New: 5000

BF 00:00:00.450 450

Parallel BF 00:00:00.210 210

Query 01:14:43.170 4483170

Existing: 1000000

New: 1000000

Unique New: 850000

Duplicate New: 150000

BF 00:00:04.850 4850

Parallel BF 00:00:01.930 1930

Query 14:01:23.190 50483190

BF: Bloom filter

Engineering, Technology & Applied Science Research Vol. 9, No. 5, 2019, 4755-4758 4758

www.etasr.com Adil et al.: Performance Analysis of Duplicate Record Detection Techniques

Figure 7 compares visually the performance of SQL, bloom
filter, and parallel bloom filter approaches. The graph in Figure
7 is plotted using Log10 of time in ms instead of time in ms and
the number of records to process (the reason this is the rapidly
growing difference between the process execution time of SQL
and the other approaches with increase in the number of rows
to compare) between the processing time of SQL and bloom
filter/parallel bloom filter approach. Figure 8 compares the
performance of bloom-filter and parallel bloom-filter. Tabular
and visual analyses clearly show the high suitability of parallel
bloom filter for duplicate detection. It becomes the only viable
solution when the number of rows in the table or the rows that
need to insert becomes very large.

Fig. 7. Execution time for duplicate detection comparison

Fig. 8. Execution time for duplicate detection comparison

V. CONCLUSION

This study presented a comprehensive performance analysis
of three database duplicate detection techniques. Performance
analysis was conducted using different numbers of existing
records in the database with bulk data insertion of different
sizes. The relative time difference between SQL and bloom
filter-based for duplicate detection and insertion rapidly
increases with the increase in the record number. The relative
time difference between the bloom filter and the parallel bloom
filter also substantially increases with the increase of records,
although not that rapidly. The research concludes that parallel
bloom filter is the most scalable and the optimum solution for
duplicate detection in databases, distributed databases, data

warehouses, and in general for any application which requires
duplicate detection. Due to the advent of modern highly
parallel computing architecture, it is highly advisable to
implement a parallel version of the algorithm which can scale
on multicore and multiple processors to efficiently utilize the
aggregate computing power.

REFERENCES

[1] A. K. Elmagarmid, P. G. Ipeirotis, V. S. Verykios, “Duplicate record
detection: A survey”, IEEE Transactions on Knowledge and Data

Engineering, Vol. 19, No. 1, pp. 1-16, 2007

[2] O. H. Akel, A Comparative Study of Duplicate Record Detection
Techniques, MSc Thesis, Middle East University, 2012

[3] B. H. Bloom, “Space/time trade-offs in hash coding with allowable

errors”, Communications of the ACM, Vol. 13, No. 7, pp. 422-426, 1970

[4] L. Fan, P. Cao, J. Almeida, A. Z. Broder, “Summary cache: a scalable

wide-area web cache sharing protocol”, IEEE/ACM Transactions on
Networking, Vol. 8, No. 3, pp. 281-293, 2000

[5] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, G. Varghese, “An

improved construction for counting bloom filters”, in: European
Symposium on Algorithms, Springer, pp. 684-695, 2006

[6] M. Mitzenmacher, “Compressed bloom filters”, IEEE/ACM

Transactions on Networking, Vol. 10, No. 5, pp. 604-612, 2002

[7] B. Chazelle, J. Kilian, R. Rubinfeld, A. Tal, “The Bloomier filter: an
efficient data structure for static support lookup tables”, Fifteenth

Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans,
USA, January 11-14, 2004

[8] A. Kumar, J. Xu, J. Wang, “Space-code bloom filter for efficient per-

flow traffic measurement”, IEEE Journal on Selected Areas in
Communications, Vol. 24, No. 12, pp. 2327-2339, 2006

[9] D. Guo, J. Wu, H. Chen, X. Luo, “Theory and network applications of

dynamic bloom filters”, 25th IEEE International Conference on
Computer Communications, Barcelona, Spain, April, 23-29, 2006

[10] S. Geravand, M. Ahmadi, “Bloom filter applications in network security:
A state-of-the-art survey”, Computer Networks, Vol. 57, No. 18, pp.

4047-4064, 2013

[11] Y. Emami, R. Javidan, “An Energy-efficient Data Transmission Scheme
in Underwater Wireless Sensor Networks”, Engineering, Technology &

Applied Science Research, Vol. 6, No. 2, pp. 931-936, 2016

Execution Time

Execution Time

