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ABSTRACT

This study introduces Machine Learning and Metaheuristic-Based Unit Commitment (ML-MetaUC),
which is a hybrid method for intelligent UC in smart grids. The ML component uses supervised models
such as linear regression and random forest on historical and real-time environmental data to predict the
upcoming demands for electricity. The Metaheuristic Optimization (MO) layer uses several methods,
including Differential Evolution (DE) and Ant Colony Optimization (ACO), to ascertain the appropriate
time to activate the generators. Simulation on the IEEE 14-bus test system showed that ME-MetaUC
reduced operating expenses by 10.7% and boosted convergence speed compared to traditional approaches.
In addition, the proposed framework has a high degree of flexibility to various load scenarios, contributing
to increased system dependability. Under conditions of uncertainty, the ML-MetaUC framework, a data-
driven and scalable solution for smart grid energy management, makes it possible to schedule producing
units robustly and more effectively.

Keywords-ML-MetaUC; smart grids; unit commitment; load forecasting; machine learning; metaheuristic

optimization; differential evolution; ant colony optimization

I.  INTRODUCTION

Smart grids have created new possibilities and problems in
electrical system design and management, with Unit
Commitment (UC) being a major operational concern. With
technical and economic restrictions, the best on/off timing for
unit production over a given time horizon is difficult. Classical
UC optimization methods fail because they ignore the
unpredictability of Renewable Energy Sources (RES), variable
demands, and system contingencies. Researchers investigate Al
techniques to create smarter and more resilient solutions. The
growing usage of RES, such as wind and solar energy, in the
electrical system, which can be unpredictable, complicates UC.

In [1], boolean mapping was used to optimize production
while underlining the limitations of managing mixed thermal
and RES in decentralized networks. In [2], a two-stage
stochastic UC paradigm was proposed with demand-side
suppliers and variable wind generation to promote probabilistic
planning in uncertain situations. Explainable ML techniques
can solve the UC dilemma, increase decision transparency, and
build stakeholder confidence [3]. Resource management must
be coordinated as smart grids become more complicated. The
coordinated performance of energy storage devices in
stochastic UC may improve reserve delivery in uncertain
settings [4]. In [5], the importance of UC in maintaining
stability in the face of multiple system uncertainties was
underlined. These studies show that the UC issue of
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contemporary power networks is complex and dynamic.
Optimization strategies have advanced with smart grid
technologies. Transmission switching is crucial to sustainable
grid operation, and in [6], a hydrogen-based water-power
solution was proposed to reduce it. Adaptive learning
frameworks can improve the decision-making process in data-
rich and autonomous systems [7]. The studies in [8, 9]
investigated hybrid and binary metaheuristic techniques for
multi-objective UC issues that balance cost, emissions, and
reliability.

The UC issue affects the scheduling and performance of the
power system. The UC problem has worsened as power
networks integrate more RES. Effective management requires
sophisticated optimization approaches, as these technologies
make power production more variable and unpredictable. Many
studies have offered novel solutions using algorithms, ML,
metaheuristics, and hybrid optimization procedures. This
review discusses the current state and limitations of UC
methods, limitations, and how this research differs from others.

In [10], a Hybrid Evolutionary Algorithm-based Multi-
Objective  Security-Constrained UC model (HEA-M-OS-
CUCM) was developed for complicated scheduling issues with
security restrictions and various optimization objectives (e.g.,
cost and emission reduction). In [11], an open-source tool for
stochastic UC using the PyPSA framework was presented to
simulate electricity generation, demand, and other operational
restrictions. In [12], Quantum Reinforcement Learning (QRL)
was used to solve the UC problem, making power systems
more tolerant to uncertainty, with the two-stage strategy
responding to environmental changes to improve UC choices.
In [13], UC frequency security was addressed by adding rapid
frequency support from Doubly-Fed Induction Generator
(DFIG) wind power facilities. The analysis addressed
frequency security limits and wind production dynamics to
ensure system stability.

The Alternating Direction Method of Multipliers (ADMM)
method to UC [14] included DLR. Optimizing power flow
through real-time line rating changes improves the system's
response to changes in production and demand. In [15], UC
was optimized using DO3LSO (Dynamic Optimization with 3-
Level Search Optimization). The optimization approach
included renewable energy and Plug-in Electric Vehicles
(PEVs). According to the results, renewable power, PEVs, and
energy storage can solve the UC issue. In [16], it was shown
that combining different deep learning models can make
predicting energy use more accurate, improving forecasts for
the effective operation of smart grids. Finally, numerous UC
solutions have been proposed, each with its benefits.
Reinforcement  learning, quantum computing, hybrid
evolutionary algorithms, and stochastic models can solve the
uncertainties of current power systems. However, these
approaches have drawbacks that must be addressed, as
computational and scalability challenges prevent cost
minimization, pollution reduction, and dependability from
being met concurrently.

II. PROPOSED METHOD

Renewable energy is growing, and electricity networks are
becoming more complicated. Therefore, UC solutions must be
adaptable and sophisticated. Smart grid systems are too
complex for standard optimization methods due to their high
dimensionality, nonlinearity, and stochasticity. To address
these issues, this study proposes ML-MetaUC, an intelligent
and robust unit commitment scheduling system that blends
supervised ML models with metaheuristic optimization. The
proposed technique analyzes environmental and load data and
uses Linear Regression (LR) and Random Forest (RF) models
to predict future power use. The metaheuristic optimization
layer uses Ant Colony Optimization (ACO) and Differential
Evolution (DE) to optimize expected insights. This two-tier
design schedules production units to reduce operating costs
while meeting complex system requirements, including load
balancing, generator ramp rates, and spinning reserve demands.
ML-MetaUC  promotes  scalability, adaptability, and
convergence under uncertain demand patterns. Finally, the
architecture allows data-driven smart grid energy management
decisions while recognizing restrictions.

In UC, a single decision unit is responsible for gathering
information from both levels and using it to produce an output
that combines the most effective scheduling of generators with
the anticipated demand. This output includes optimal
scheduling, cost analysis, rates of constraint violation, and
evaluation of cost functions. These evaluations include the cost
of fuel, the cost of starting up and shutting down, and penalty
terms. The ML-MetaUC framework can successfully minimize
operating expenses, expedite convergence, and react to various
load scenarios due to the integration of these capabilities. Being
a data-driven, scalable, and reliable option for contemporary
smart grid energy management, the proposed system reduced
operating expenses by 10.7% on the IEEE 14-bus test system.
Thus, it is a solution that is suitable for current smart grid
energy management.

A. Machine Learning Based Demand Forecasting

Equation (1) shows how the multivariate LR model for
demand forecasting is computed.

D, = Bo+ X Bixiy + S Y1 VinZijee + & (1)

Within the framework of the extended multivariate LR model,
this equation serves as a representation of the dependent
variable D,. The amount of power that is anticipated to be used
at time t is represented by x;,. Some examples of predictors
include many types of environmental and operational
numerical information, such as temperature, wind speed, sun
radiation, and time of day, as well as social behavior
categorized or encoded in Z; ; ., such as event type, seasonality,
and user consumption classes. During the process of initializing
the model, the coefficients f8; are used for the main effects,
whereas y;j, and k are utilized for the second-order or
interaction effects. In the context of demand, the intercept,
denoted 8, represents the initial demand level. On the other
hand, the residual, denoted &, , represents the random
fluctuation. This model can extract demand patterns from the
elements that influence the behavior of smart grid loads.
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Equation (2) describes ensemble-based forecasting using
RF. When j is a random variable and 6; is an internal
parameter, the mean result of T independent regression trees is
denoted f;(.) . The trees are trained using the dataset's
bootstrapped subsets, with features randomly selected at each
split. This gives the trees a greater degree of variation. Using
this strategy can reduce the incidence of overfitting and
improve generalization with high-dimensional datasets. The
objective is to capture the complex and nonlinear interactions
between the input features and the target load values. To do
this, each tree traverses the feature space x; in a diverse
manner. The model excels in coping with abnormalities and
noise in historical data.

Dimooth = gD + (1 — a)DFM™M0<a <1 (3)

Equation (3) describes the Exponential Weighted Moving
Average (EWMA). EWMA makes the inputs to downstream
optimization more constant and resistant to sudden changes by
adding temporal smoothing to the expected demand. When the
smoothing factor a is smaller, the decay rate for earlier data is
regulated. On the other hand, when the factor is larger, it
indicates that more current forecasts are being made. Using this
recursive strategy, optimization algorithms are successfully
protected against being fooled by transient demand spikes
when applied to time-series data. For decision-making inside

the MetaUC framework, the effective load estimate is a smooth
Dtsmaoth

D¢—Dy
D¢

1
Ly =<3
ML N &t=1
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Equation (4) describes a machine learning loss function
with L2 regularization. With the help of the Mean Absolute
Percentage Error (MAPE), this composite loss function can
enhance the accuracy of predictions while simultaneously
enhancing interpretability and scale invariance. To avoid the
phenomenon of overfitting, the regularization term A Y™, B2
penalizes high coefficients, hence enabling the model to allow
for extension. Working with exceedingly unexpected data and
the need for explainability in real-time forecasting are two
situations in which this is of the utmost importance. The tuning
parameter A is responsible for controlling the tradeoff that
exists between the bias and the variance of the model.

I = iZ]TEl ZneNj,kAIj,n(k) )

Equation (5) describes the feature importance score in RF,
where [, is a metric used to quantify the decision-making
process in the forest. This metric is specifically designed to
highlight critical factors for each attribute. N;; denotes the set

J® 40, 37, ‘ng) +](k)+wz-2g:1 ¢§k)—(l("‘1)+w1-2?=1 b

(D)0 40, 56, o)

of nodes in tree j that utilized feature k, while Al; , (k) encodes
the information gain or impurity reduction at node n. A
reasonable understanding of the predictive significance of the
feature can be obtained by averaging it across all of the trees,
which is important for pruning or attention-guided learning in
circumstances when resources are limited, as well as for
determining which inputs have the most impact on energy use.

B. Metaheuristic Optimization for Unit Commitment
Equation (6) describes the total UC cost function:

min/ = Yt Yo a|agPZe + bgPye + Colug, +
SUy.84 4+ SDy.Gg (6)

To get the lowest possible total cost J, we need to include
the fuel costs, which are a quadratic function of the generator's
power output Py ., multiplied by the binary on/off state ug;.
The unique cost curve for each generator is determined by the
coefficients ag, bg, Cy The starting S Uy and shutdown SD,
binary transition indicators trigger charges &4, and ¢g4; ,
respectively. This comprehensive cost model may accurately
and adaptably represent the economics of heat generation and
dynamic operation.

Yoy Pyrug, = DEMOOth, PN < P < PIOX, Yt (7)

Equation (7) describes the power balance and generator
constraints. By maintaining power balance, the equation
ensures that, at any time ¢, the total generated power is equal to
the smoothed demand DS™°°t"  Furthermore, every generator
must remain within its stated technical minimum and
maximum output restrictions, indicated as Pgmi" and Pgma" s
respectively. These limitations keep the system dependable and
realistic by considering thermal generators' physical and
operational constraints. No matter the load, it ensures a safe
and practical dispatch plan.

k k k k
Vi( ) = Xr(l) +F. (Xr(z) - Xr(s) @)
Q
7+ 1) =1 —p).7;(0) + ZII<(=1E ©
Equation (9) describes the ACO pheromone update rule. In
the ACO process, the ant agents are instructed to make
probabilistic judgments on the on/off switching of generators

and activities associated with them based on the pheromone
value 7;;(t). The evaporation factor p is employed to ensure

exploration and prevent overexploitation. ]2 is the credit for
k

making beneficial ideas. J, can be obtained by multiplying ant
k by Q. Because of this dynamic, flexibility can be maintained,
and we can work toward optimal scheduling, even when the
conditions surrounding demand situations are uncertain.

(k-1)

JED+w 3T 0 P+ B 4w, 35,

Equation (10) shows the convergence criterion for
optimization. The metaheuristic optimization process is
terminated by the relative convergence check when the
fractional change in the total cost between iterations falls below
a modest threshold denoted €. Once the solution is determined,

(pék—l)

| <e (10)

this criterion eliminates needless iterations, ensuring that
computation is carried out effectively. This augmented
convergence equation incorporates penalty factors into the
convergence logic, which may improve UC optimization and
constraint awareness. At iteration k, the formula considers
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economic factors, such as fuel consumption and generator start-
up and shutdown costs, and circles around ] @ which
represents the overall objective function value (i.e., operational
cost). Two penalty modifications are included to make the
equation reasonable. In each stage ¢, penalties for load balance
infractions are added. For all k iterations, the first iteration

legot(k) is a penalty to generate more than the required
inhibits in power imbalance. The second is the total of all
conceivable breaches of operational limits particular to each

unit g, such as ramp rate restrictions, minimum uptime and

downtime requirements, and spinning reserve: Z‘g;=1 goék).
Physical limit breaches result in equal monetary punishments
due to penalty weights w; and w, . These penalty-adjusted
elements are added to the relative change calculation to
improve the convergence criteria and avoid early termination
when crucial operational constraints are broken but the cost
reduces. Further repeats may not provide substantial gains if
the normalized change is below a reasonable threshold ¢,
typically set at 10™* . Since decisions about energy
management are time-sensitive, they are of the utmost
significance.

In cases involving smart grids, this technique can
potentially enhance power demand predictions since it
incorporates multivariate regression, exponential smoothing,
and optimization for machine learning. The first step is to
develop a multivariate regression model. This model will then
use the predicted demand (D, ) to direct the subsequent actions.

A linear combination of numerous input quality
characteristics decides the value of X;,. Coefficients weigh
these variables and additional interaction Z;, . and t. The
model may use this characteristic to consider all variables'
direct and indirect impacts on demand.

Applying exponential smoothing to the anticipated demand
can eliminate spikes and make the flow of time more
consistent. The weighted average of the present prediction is
the smoothed value, which is indicated as ﬁtsm""”‘ before an
easing of demand. The smoothing parameter a is used to
govern the smoothing of D,. This method reduces the amount
of noise and stabilizes the forecast over time.

In the next step, the performance of the method is evaluated
using a loss function known asL,,; . This loss function includes
an L2 regularization term and the MAPE. The MAPE
component penalizes severe prediction errors compared to the
actual demand. Additionally, the regularization term AY 57
assists in preventing overfitting by restricting the amount of the
model weights.

After this process, the parameters of the model, denoted
by 6, are modified through an iterative process utilizing
gradient descent, with each revision aiming to minimize the
loss function. One of the components of the ML update method
is the elimination of the loss gradient, which is scaled by the
learning rate n . Combining optimization, smoothing, and
regression into a flexible and robust framework makes it
feasible to anticipate energy consumption in real-time grid
systems.

III. NUMERICAL RESULTS AND DISCUSSION

Comprehensive numerical tests were carried out on the
IEEE 14-bus test system, which offers a standardized platform
for UC analysis. These tests evaluated the effectiveness and
practicability of the proposed ML-MetaUC design. The
patterns of renewable energy supply over a typical 24-hour
period, ambient temperature, and hourly load demand are some
synthetic and historical data incorporated into the simulation
environment. Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE) are two measures used to evaluate the
effectiveness of the ML layer. This layer is trained using real-
world data on energy use. This was done after the ACO and DE
techniques had their population sizes and iteration constraints
fine-tuned. Metaheuristic optimization was then applied.
Mixture Integer Programming (MIP) and prioritizing lists are
two examples of traditional methodologies used to commit
units while maintaining the same parameters. The simulation is
conducted under varied degrees of load and uncertainty. All
simulations were performed on a high-performance computing
infrastructure using Python and MATLAB modules that
seamlessly interface with each other.

A. Total Operating Cost Reduction

ML-MetaUC uses LR and RF to dynamically forecast
demand, unlike static or linear modeling and strict optimization
heuristics. These models reduce forecast errors, reduce
overfitting, and improve generator commitment. Metaheuristic
algorithms such as ACO and DE change unit schedules to
optimize the overall cost function after demand forecasting.
This function covers fuel, starting, shutdown, and operational
breach penalties. Due to the hybrid architecture, the generator
starts/stops and load dispatching are significantly reduced.
Based on real data on the IEEE 14-bus system, ML-MetaUC
reduced the overall operating cost by 10.7% while maintaining
system dependability and physical restrictions. The model
performs well due to its fast convergence, flexibility to new
data, and capacity to reduce direct expenses and violation
penalties.

Figure 1 and (11) show that total operation cost reduction
has been deliberated. The recommended ML-MetaUC
technique calculates the total operating cost Cyyeq for all
committed generating units G over a 24-hour scheduling
horizon T. The gasoline cost function dominates this equation.

CJ uel(Pg_t) shows the cost of energy production per unit g at
time ¢ compared to its power output Py ;

l
Crotar = 20—y 26a €1 (Pyr) + €SP (U gy, Ugyoy) +
Cgshutdown(ugjt‘ Ug,t+1)] +3r, Zgzllg,t Ve (D)

This function simulates generator activity.

startup hutd
Cy (Ug,t!Ug,t—l) and Cj™ "W”(Ug_t, Ug'tﬂ) are the

second and third elements, respectively. The status variable
Uy, specifies whether a generator is online (1) or not at time ¢,
impacting expenditures. Additionally, the term Ag..V,,
considers the system's penalty for constraint violations. The
economic impact of violating generator constraints (e.g., ramp
rate, reserve margin, or minimum uptime) is represented by

Ag,t» while the actual violation amount is measured by V. The
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aim is to maintain operational reliability and price during this
period. ML-MetaUC optimizes all these components
simultaneously using metaheuristic algorithms informed by
accurate demand forecasts to minimize operational expense,
unlike conventional deterministic approaches that ignore
dynamic system variability and constraint interactions.

—4@— HEA-M-0S-CUCM —V— PyPSA —4A— QRL @  ADMM —@ — ML-MetaUC
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Fig. 1.

Total operating cost reduction (%).

B. Convergence Speed and Computational Efficiency

Any UC strategy for real-time smart grid systems must
meet specified computational efficiency and convergence
speed requirements. ML-MetaUC metrics are mostly affected
by the metaheuristic optimization layer, which incorporates
ACO and DE. The speed of convergence is measured by the
number of iterations needed to get a stable or near-optimal
solution, defined as a minimum change in the objective
function value below a pre-specified threshold, such as 1074
All scheduling processes, from demand forecasting to
constraint validation, take seconds or minutes to compute. ML-
MetaUC escapes local minima better than ADMM or PyPSA
due to its hybrid approach and metaheuristics' simultaneous
exploration and exploitation. This speeds convergence and
reduces computational cost, especially for complicated high-
dimensional load circumstances.

Bl () + 6 UL, 0 )+

gt’
C‘qshutdown(uggf‘t)’ Uéill) + Ag,t'Vg(_It()] _](k—1)| <e (12)

Figure 2 describes the convergence speed and
computational efficiency. A comparison is made between the
overall operating cost of the current iteration k and the cost of
the iteration that came before it, denoted by kK —1, for
sustained convergence. This verification ensures that the
optimization process remains stable. All generating units g that
are spread out throughout the scheduling horizon impact the
overall cost, which is an accumulation of many different

components. The fuel consumption of the generator is
expressed as a percentage of its output power, and the formula
C; uez(Pg(’I:) indicates this proportion. The on/off state
transitions of the unit are what determine the startup and
shutdown costs C;mrmp and CZMEaowWn 2. .V, is used 10
compensate for the violation of operational limitations, such as
ramp rate limits or reserve shortfalls, expressing the
compensation for the breach. The use of an extremely small
threshold &, such as 10™#, is employed to ascertain the exact
disparity between the total cost at iteration k and the objective
function value J*~1 from the preceding iteration. If the
difference between the two values is smaller than &, the
technique is deemed converged. This all-encompassing
formulation, which considers elements related to feasibility and
includes economic cost, makes it possible to make reliable and
practical decisions despite operational uncertainty.

= HEA-M-OS-CUCM === PyPSA QRL ADMM === MIL-MetaUC

1000

900

Convergence Speed and Computational Efficiency

0 10 20 30 40 50 60 70 80 90 100
Number of Iterations

Fig. 2. Convergence speed and computational efficiency.

C. Forecasting Accuracy (MAE and RMSE)

The accuracy and effectiveness of UC choices depend on
precise projections. The ML-MetaUC framework trains LR and
RF models using weather and load data to anticipate energy
peak demand. RMSE and MAE are used to evaluate these
forecasts. Ignoring direction, MAE measures the average
prediction error without considering its direction, whereas
RMSE delivers a sensitive measure of prediction accuracy by
penalizing greater errors more severely. Lower metrics indicate
that actual load profiles match projected demand, allowing for
more exact UC. Cost savings and system stability rely on
accurate projections. Stopping the generator reduces reserve
margins. The ML part of ML-MetaUC is more accurate than
typical demand prediction methods because it can integrate
nonlinear temporal patterns and external environmental factors.
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Figure 3 and (13a, b) discuss the accuracy of the forecast.
The RMSE and MAE values of a forecast are used to evaluate
the accuracy of the prediction. The actual demand at time t is
represented by D;, and D, shows its standard deviation. When
the RMSE is linearly associated with the MAE, the deviations
are larger than they would otherwise be. A decrease in MAE or
RMSE demonstrates an improvement in demand forecasting,
which improves UC decisions by reducing the number of
generator starts and shutdowns that were not essential. The
ML-MetaUC framework can produce lower MAE and RMSE
than standard estimate approaches because it uses RF and LR
models. These models are trained against both historical and
real-time environmental data.

D. Constraint Violation Rate

A low constraint violation rate means that the UC algorithm
can manage the power system and generate unit operational
and physical restrictions. Such restrictions include generator
ramp-up and ramp-down timings (maximum and minimum),
spinning reserve needs, and load balancing at each time step.
ML-MetaUC avoids unstable or unworkable solutions by
continuously monitoring and penalizing infractions using an
objective-function-built punishment function. The violation
rate is the total of all scheduling horizon intervals divided by
the proportion of constraint breach intervals. The optimization
approach balances technical feasibility and economic efficiency
when violations are low. ML-MetaUC's adaptive scheduling
considers real-time feedback to produce a commitment plan
that is highly compliant and robust under different operating
conditions, unlike classic solvers such as HEA-M-OS-CUCM
and ADMM, which require strict penalty tuning or constraint
simplification.

Number of Iterations

Fig. 4. Constraint violation rate (%).

Violationrate = — %1, ¥5_11(|V,, > 0[) (14)

Equation (14) describes the constraint violation rate, and
Figure 4 shows the results. The rate of constraint violation is
one of the indicators that may be used to determine how often a
solution goes over its technical or operational constraints. In
this case, Vg, indicates the severity of the violation for
generator g at time t, which may include a ramp rate
exceedance or a reserve deficit. If there is a violation, the
indicator function I(.) will return a value of 1, and in all other
situations it will be zero. The aggregate number of violations
across all generating units and the whole time horizon is
normalized by this statistic, which allows one to estimate the
degree of trustworthiness associated with the solution.
Although the optimization approach considers the system's
operational restrictions, it does so under the assumption that the
violation rate is low. Since it contains a punishment mechanism
for constraint breaches inside the objective function, the ML-
MetaUC framework achieves better results than conventional
approaches, such as PyPSA and QRL, as it prevents the
algorithm from finding impractical solutions.

IV. CONCLUSION

This study presented a flexible and powerful energy
management solution for smart grids, called ML-MetaUC,
which combines machine learning-based demand forecasting
with metaheuristic optimization for generator scheduling.
ACO, LR, and RF work together to save costs, accelerate
convergence, and adapt to dynamic and unexpected load
circumstances. Experimental findings utilizing the IEEE 14-bus
test system demonstrate that the framework improves
operational reliability and efficiency. In future research,
expanding the framework to larger and more complicated
power networks can evaluate its scalability and performance in
diverse operational environments. Deep learning models, such
as LSTM or transformer networks, can help improve demand
estimates, especially in non-stationary and non-linear settings.
In addition, storage systems can be examined to manage
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intermittency and unpredictability with RES. Real-time
deployment using edge computing and IoT-based sensor
infrastructure may help construct more autonomous and
responsive smart grid systems.
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