
Engineering, Technology & Applied Science Research Vol. 15, No. 5, 2025, 27293-27299 27293  
 

www.etasr.com Katre et al.: Metaheuristic Optimization and Machine Learning-Based Unit Commitment Strategies in … 

 

Metaheuristic Optimization and Machine 

Learning-Based Unit Commitment Strategies in 

Smart Grids 
 

Rohit Katre 

Department of Electrical and Electronics Engineering, Dr.Vishwanath Karad MIT World Peace 

University Pune, Maharashtra, India | Department of Electrical Engineering, Dr. D. Y. Patil Institute of 

Technology, Pune, Maharashtra, India 

rvkatre@gmail.com 

 

Chetan Khadse 

Department of Electrical and Electronics Engineering, Dr.Vishwanath Karad MIT World Peace 

University, Pune, Maharashtra, India 

chetan.khadse07@gmail.com (corresponding author) 

 

Raghunath Bhadade 

Department of Electrical and Electronics Engineering, Dr.Vishwanath Karad MIT World Peace 

University Pune, Maharashtra, India 

raghunath.bhadade@mitwpu.edu.in 

Received: 21 June 2025 | Revised: 15 July 2025 | Accepted: 27 July 2025 

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.12853 

ABSTRACT 

This study introduces Machine Learning and Metaheuristic-Based Unit Commitment (ML-MetaUC), 

which is a hybrid method for intelligent UC in smart grids. The ML component uses supervised models 

such as linear regression and random forest on historical and real-time environmental data to predict the 

upcoming demands for electricity. The Metaheuristic Optimization (MO) layer uses several methods, 

including Differential Evolution (DE) and Ant Colony Optimization (ACO), to ascertain the appropriate 

time to activate the generators. Simulation on the IEEE 14-bus test system showed that ME-MetaUC 

reduced operating expenses by 10.7% and boosted convergence speed compared to traditional approaches. 

In addition, the proposed framework has a high degree of flexibility to various load scenarios, contributing 

to increased system dependability. Under conditions of uncertainty, the ML-MetaUC framework, a data-

driven and scalable solution for smart grid energy management, makes it possible to schedule producing 

units robustly and more effectively. 

Keywords-ML-MetaUC; smart grids; unit commitment; load forecasting; machine learning; metaheuristic 

optimization; differential evolution; ant colony optimization 

I. INTRODUCTION  

Smart grids have created new possibilities and problems in 
electrical system design and management, with Unit 
Commitment (UC) being a major operational concern. With 
technical and economic restrictions, the best on/off timing for 
unit production over a given time horizon is difficult. Classical 
UC optimization methods fail because they ignore the 
unpredictability of Renewable Energy Sources (RES), variable 
demands, and system contingencies. Researchers investigate AI 
techniques to create smarter and more resilient solutions. The 
growing usage of RES, such as wind and solar energy, in the 
electrical system, which can be unpredictable, complicates UC.  

In [1], boolean mapping was used to optimize production 
while underlining the limitations of managing mixed thermal 
and RES in decentralized networks. In [2], a two-stage 
stochastic UC paradigm was proposed with demand-side 
suppliers and variable wind generation to promote probabilistic 
planning in uncertain situations. Explainable ML techniques 
can solve the UC dilemma, increase decision transparency, and 
build stakeholder confidence [3]. Resource management must 
be coordinated as smart grids become more complicated. The 
coordinated performance of energy storage devices in 
stochastic UC may improve reserve delivery in uncertain 
settings [4]. In [5], the importance of UC in maintaining 
stability in the face of multiple system uncertainties was 
underlined. These studies show that the UC issue of 
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contemporary power networks is complex and dynamic. 
Optimization strategies have advanced with smart grid 
technologies. Transmission switching is crucial to sustainable 
grid operation, and in [6], a hydrogen-based water-power 
solution was proposed to reduce it. Adaptive learning 
frameworks can improve the decision-making process in data-
rich and autonomous systems [7]. The studies in [8, 9] 
investigated hybrid and binary metaheuristic techniques for 
multi-objective UC issues that balance cost, emissions, and 
reliability. 

The UC issue affects the scheduling and performance of the 
power system. The UC problem has worsened as power 
networks integrate more RES. Effective management requires 
sophisticated optimization approaches, as these technologies 
make power production more variable and unpredictable. Many 
studies have offered novel solutions using algorithms, ML, 
metaheuristics, and hybrid optimization procedures. This 
review discusses the current state and limitations of UC 
methods, limitations, and how this research differs from others. 

In [10], a Hybrid Evolutionary Algorithm-based Multi-
Objective Security-Constrained UC model (HEA-M-OS-
CUCM) was developed for complicated scheduling issues with 
security restrictions and various optimization objectives (e.g., 
cost and emission reduction). In [11], an open-source tool for 
stochastic UC using the PyPSA framework was presented to 
simulate electricity generation, demand, and other operational 
restrictions. In [12], Quantum Reinforcement Learning (QRL) 
was used to solve the UC problem, making power systems 
more tolerant to uncertainty, with the two-stage strategy 
responding to environmental changes to improve UC choices. 
In [13], UC frequency security was addressed by adding rapid 
frequency support from Doubly-Fed Induction Generator 
(DFIG) wind power facilities. The analysis addressed 
frequency security limits and wind production dynamics to 
ensure system stability.  

The Alternating Direction Method of Multipliers (ADMM) 
method to UC [14] included DLR. Optimizing power flow 
through real-time line rating changes improves the system's 
response to changes in production and demand. In [15], UC 
was optimized using DO3LSO (Dynamic Optimization with 3-
Level Search Optimization). The optimization approach 
included renewable energy and Plug-in Electric Vehicles 
(PEVs). According to the results, renewable power, PEVs, and 
energy storage can solve the UC issue. In [16], it was shown 
that combining different deep learning models can make 
predicting energy use more accurate, improving forecasts for 
the effective operation of smart grids. Finally, numerous UC 
solutions have been proposed, each with its benefits. 
Reinforcement learning, quantum computing, hybrid 
evolutionary algorithms, and stochastic models can solve the 
uncertainties of current power systems. However, these 
approaches have drawbacks that must be addressed, as 
computational and scalability challenges prevent cost 
minimization, pollution reduction, and dependability from 
being met concurrently. 

II. PROPOSED METHOD 

Renewable energy is growing, and electricity networks are 
becoming more complicated. Therefore, UC solutions must be 
adaptable and sophisticated. Smart grid systems are too 
complex for standard optimization methods due to their high 
dimensionality, nonlinearity, and stochasticity. To address 
these issues, this study proposes ML-MetaUC, an intelligent 
and robust unit commitment scheduling system that blends 
supervised ML models with metaheuristic optimization. The 
proposed technique analyzes environmental and load data and 
uses Linear Regression (LR) and Random Forest (RF) models 
to predict future power use. The metaheuristic optimization 
layer uses Ant Colony Optimization (ACO) and Differential 
Evolution (DE) to optimize expected insights. This two-tier 
design schedules production units to reduce operating costs 
while meeting complex system requirements, including load 
balancing, generator ramp rates, and spinning reserve demands. 
ML-MetaUC promotes scalability, adaptability, and 
convergence under uncertain demand patterns. Finally, the 
architecture allows data-driven smart grid energy management 
decisions while recognizing restrictions.  

In UC, a single decision unit is responsible for gathering 
information from both levels and using it to produce an output 
that combines the most effective scheduling of generators with 
the anticipated demand. This output includes optimal 
scheduling, cost analysis, rates of constraint violation, and 
evaluation of cost functions. These evaluations include the cost 
of fuel, the cost of starting up and shutting down, and penalty 
terms. The ML-MetaUC framework can successfully minimize 
operating expenses, expedite convergence, and react to various 
load scenarios due to the integration of these capabilities. Being 
a data-driven, scalable, and reliable option for contemporary 
smart grid energy management, the proposed system reduced 
operating expenses by 10.7% on the IEEE 14-bus test system. 
Thus, it is a solution that is suitable for current smart grid 
energy management. 

A. Machine Learning Based Demand Forecasting  

Equation (1) shows how the multivariate LR model for 
demand forecasting is computed.  

��� = �� + ∑ �	
	,��	
� + ∑ ∑ ��,���,�,���
���
� + �� (1) 

Within the framework of the extended multivariate LR model, 
this equation serves as a representation of the dependent 

variable ���. The amount of power that is anticipated to be used 
at time � is represented by 
	,� . Some examples of predictors 

include many types of environmental and operational 
numerical information, such as temperature, wind speed, sun 
radiation, and time of day, as well as social behavior 
categorized or encoded in ��,�,� , such as event type, seasonality, 

and user consumption classes. During the process of initializing 
the model, the coefficients �	  are used for the main effects, 
whereas ��,�  and �  are utilized for the second-order or 

interaction effects. In the context of demand, the intercept, 
denoted ��   represents the initial demand level. On the other 
hand, the residual, denoted �� , represents the random 
fluctuation. This model can extract demand patterns from the 
elements that influence the behavior of smart grid loads.  
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��� = �
� ∑ ���
�; �����
�     (2) 

Equation (2) describes ensemble-based forecasting using 
RF. When �  is a random variable and ��  is an internal 

parameter, the mean result of � independent regression trees is 
denoted �� . " . The trees are trained using the dataset's 

bootstrapped subsets, with features randomly selected at each 
split. This gives the trees a greater degree of variation. Using 
this strategy can reduce the incidence of overfitting and 
improve generalization with high-dimensional datasets. The 
objective is to capture the complex and nonlinear interactions 
between the input features and the target load values. To do 
this, each tree traverses the feature space 
�  in a diverse 
manner. The model excels in coping with abnormalities and 
noise in historical data.  

��#�$$�% = &��� +  1 − &"��)�#�$$�% , 0 < & < 1 (3) 

Equation (3) describes the Exponential Weighted Moving 
Average (EWMA). EWMA makes the inputs to downstream 
optimization more constant and resistant to sudden changes by 
adding temporal smoothing to the expected demand. When the 
smoothing factor & is smaller, the decay rate for earlier data is 
regulated. On the other hand, when the factor is larger, it 
indicates that more current forecasts are being made. Using this 
recursive strategy, optimization algorithms are successfully 
protected against being fooled by transient demand spikes 
when applied to time-series data. For decision-making inside 
the MetaUC framework, the effective load estimate is a smooth ��#�$$�%. 

,-. = �
/ ∑ 012)1�2

12 0 + 3 ∑ �	45	
�/�
�   (4) 

Equation (4) describes a machine learning loss function 
with L2 regularization. With the help of the Mean Absolute 
Percentage Error (MAPE), this composite loss function can 
enhance the accuracy of predictions while simultaneously 
enhancing interpretability and scale invariance. To avoid the 

phenomenon of overfitting, the regularization term 3 ∑ �	45	
�  
penalizes high coefficients, hence enabling the model to allow 
for extension. Working with exceedingly unexpected data and 
the need for explainability in real-time forecasting are two 
situations in which this is of the utmost importance. The tuning 
parameter 3  is responsible for controlling the tradeoff that 
exists between the bias and the variance of the model.  

6� = �
� ∑ ∑ ∆58/9,:

��
� 6�,5 �"   (5) 

Equation (5) describes the feature importance score in RF, 
where 6�  is a metric used to quantify the decision-making 
process in the forest. This metric is specifically designed to 
highlight critical factors for each attribute. ;�,� denotes the set 

of nodes in tree � that utilized feature �, while ∆6�,5 �" encodes 

the information gain or impurity reduction at node < . A 
reasonable understanding of the predictive significance of the 
feature can be obtained by averaging it across all of the trees, 
which is important for pruning or attention-guided learning in 
circumstances when resources are limited, as well as for 
determining which inputs have the most impact on energy use. 

B. Metaheuristic Optimization for Unit Commitment 

Equation (6) describes the total UC cost function: 

min@,� A = ∑ ∑ BCDED,�4 + FDED,� + GDHID
���
� JD,� +
                      KLD. MD,� + K�D . ND,�   (6) 

To get the lowest possible total cost A, we need to include 
the fuel costs, which are a quadratic function of the generator's 
power output ED,� , multiplied by the binary on/off state JD,� . 

The unique cost curve for each generator is determined by the 
coefficients CD, FD, GD  The starting KLD  and shutdown K�D 

binary transition indicators trigger charges MD,� and ND,� , 

respectively. This comprehensive cost model may accurately 
and adaptably represent the economics of heat generation and 
dynamic operation. 

∑ ED,�JD,�ID
� = ��#�$$�% , ED�	5 ≤ ED,� ≤ ED�PQ , ∀� (7) 

Equation (7) describes the power balance and generator 
constraints. By maintaining power balance, the equation 
ensures that, at any time �, the total generated power is equal to 

the smoothed demand ��#�$$�% . Furthermore, every generator 
must remain within its stated technical minimum and 

maximum output restrictions, indicated as ED�	5  and ED�PQ , 

respectively. These limitations keep the system dependable and 
realistic by considering thermal generators' physical and 
operational constraints. No matter the load, it ensures a safe 
and practical dispatch plan. 

S	 �" = TU� �" + V. �TU4 �" − TUW �"�   (8) 

X	� � + 1" =  1 − Y". X	� �" + ∑ Z
[:

\�
�    (9) 

Equation (9) describes the ACO pheromone update rule. In 
the ACO process, the ant agents are instructed to make 
probabilistic judgments on the on/off switching of generators 
and activities associated with them based on the pheromone 
value X	� �". The evaporation factor Y is employed to ensure 

exploration and prevent overexploitation. 
Z
[:  is the credit for 

making beneficial ideas. A� can be obtained by multiplying ant � by ]. Because of this dynamic, flexibility can be maintained, 
and we can work toward optimal scheduling, even when the 
conditions surrounding demand situations are uncertain. 

 

^[ :"_`a.∑ b2 :"c2da _[ :"_`e.∑ fg :")h[ :ia"_`a.∑ b2 :ia"c2da _[ :"_`e.∑ bg :ia"jgda kjgda
[ :ia"_`a.∑ b2 :ia"c2da _[ :"_`e.∑ bg :ia"jgda

^ < �   (10) 

Equation (10) shows the convergence criterion for 
optimization. The metaheuristic optimization process is 
terminated by the relative convergence check when the 
fractional change in the total cost between iterations falls below 
a modest threshold denoted �. Once the solution is determined, 

this criterion eliminates needless iterations, ensuring that 
computation is carried out effectively. This augmented 
convergence equation incorporates penalty factors into the 
convergence logic, which may improve UC optimization and 
constraint awareness. At iteration �, the formula considers 
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economic factors, such as fuel consumption and generator start-

up and shutdown costs, and circles around A �" , which 
represents the overall objective function value (i.e., operational 
cost). Two penalty modifications are included to make the 
equation reasonable. In each stage �, penalties for load balance 
infractions are added. For all �  iterations, the first iteration 

∑ l� �"��
�  is a penalty to generate more than the required 

inhibits in power imbalance. The second is the total of all 
conceivable breaches of operational limits particular to each 
unit m , such as ramp rate restrictions, minimum uptime and 

downtime requirements, and spinning reserve: ∑ lD �"ID
� . 

Physical limit breaches result in equal monetary punishments 
due to penalty weights n�  and n4 . These penalty-adjusted 
elements are added to the relative change calculation to 
improve the convergence criteria and avoid early termination 
when crucial operational constraints are broken but the cost 
reduces. Further repeats may not provide substantial gains if 
the normalized change is below a reasonable threshold � , 
typically set at 10)o . Since decisions about energy 
management are time-sensitive, they are of the utmost 
significance.  

In cases involving smart grids, this technique can 
potentially enhance power demand predictions since it 
incorporates multivariate regression, exponential smoothing, 
and optimization for machine learning. The first step is to 
develop a multivariate regression model. This model will then 
use the predicted demand (��) to direct the subsequent actions. 

A linear combination of numerous input quality 
characteristics decides the value of T	,� . Coefficients weigh 

these variables and additional interaction ��,�,�  and � . The 

model may use this characteristic to consider all variables' 
direct and indirect impacts on demand. 

Applying exponential smoothing to the anticipated demand 
can eliminate spikes and make the flow of time more 
consistent. The weighted average of the present prediction is 

the smoothed value, which is indicated as ���#�$$�%  before an 
easing of demand. The smoothing parameter &  is used to 

govern the smoothing of ���. This method reduces the amount 
of noise and stabilizes the forecast over time. 

In the next step, the performance of the method is evaluated 
using a loss function known as,-. . This loss function includes 
an L2 regularization term and the MAPE. The MAPE 
component penalizes severe prediction errors compared to the 

actual demand. Additionally, the regularization term 3 ∑ �	4 
assists in preventing overfitting by restricting the amount of the 
model weights. 

After this process, the parameters of the model, denoted 
by  � , are modified through an iterative process utilizing 
gradient descent, with each revision aiming to minimize the 
loss function. One of the components of the ML update method 
is the elimination of the loss gradient, which is scaled by the 
learning rate p . Combining optimization, smoothing, and 
regression into a flexible and robust framework makes it 
feasible to anticipate energy consumption in real-time grid 
systems. 

III. NUMERICAL RESULTS AND DISCUSSION 

Comprehensive numerical tests were carried out on the 
IEEE 14-bus test system, which offers a standardized platform 
for UC analysis. These tests evaluated the effectiveness and 
practicability of the proposed ML-MetaUC design. The 
patterns of renewable energy supply over a typical 24-hour 
period, ambient temperature, and hourly load demand are some 
synthetic and historical data incorporated into the simulation 
environment. Root Mean Square Error (RMSE) and Mean 
Absolute Error (MAE) are two measures used to evaluate the 
effectiveness of the ML layer. This layer is trained using real-
world data on energy use. This was done after the ACO and DE 
techniques had their population sizes and iteration constraints 
fine-tuned. Metaheuristic optimization was then applied. 
Mixture Integer Programming (MIP) and prioritizing lists are 
two examples of traditional methodologies used to commit 
units while maintaining the same parameters. The simulation is 
conducted under varied degrees of load and uncertainty. All 
simulations were performed on a high-performance computing 
infrastructure using Python and MATLAB modules that 
seamlessly interface with each other. 

A. Total Operating Cost Reduction  

ML-MetaUC uses LR and RF to dynamically forecast 
demand, unlike static or linear modeling and strict optimization 
heuristics. These models reduce forecast errors, reduce 
overfitting, and improve generator commitment. Metaheuristic 
algorithms such as ACO and DE change unit schedules to 
optimize the overall cost function after demand forecasting. 
This function covers fuel, starting, shutdown, and operational 
breach penalties. Due to the hybrid architecture, the generator 
starts/stops and load dispatching are significantly reduced. 
Based on real data on the IEEE 14-bus system, ML-MetaUC 
reduced the overall operating cost by 10.7% while maintaining 
system dependability and physical restrictions. The model 
performs well due to its fast convergence, flexibility to new 
data, and capacity to reduce direct expenses and violation 
penalties. 

Figure 1 and (11) show that total operation cost reduction 
has been deliberated. The recommended ML-MetaUC 
technique calculates the total operating cost G�$�Pq  for all 
committed generating units r  over a 24-hour scheduling 
horizon �. The gasoline cost function dominates this equation. 

GDs@tq�ED,�� shows the cost of energy production per unit m at 

time � compared to its power output ED,� . 

G�$�Pq = ∑ ∑ BGDs@tq�ED,�� + GD#�PU�@��LD,� , LD,�)�� +ID
���
�     GD#%@�u$v5�LD,� , LD,�_��H + ∑ ∑ 3D,�ID
���
� . SD,� (11) 

This function simulates generator activity. GD#�PU�@��LD,� , LD,�)��  and GD#%@�u$v5�LD,� , LD,�_��  are the 

second and third elements, respectively. The status variable LD,�  specifies whether a generator is online (1) or not at time �, 

impacting expenditures. Additionally, the term 3D,� . SD,� 

considers the system's penalty for constraint violations. The 
economic impact of violating generator constraints (e.g., ramp 
rate, reserve margin, or minimum uptime) is represented by 3D,�, while the actual violation amount is measured by SD,� The 
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aim is to maintain operational reliability and price during this 
period. ML-MetaUC optimizes all these components 
simultaneously using metaheuristic algorithms informed by 
accurate demand forecasts to minimize operational expense, 
unlike conventional deterministic approaches that ignore 
dynamic system variability and constraint interactions. 

 

 

Fig. 1.  Total operating cost reduction (%). 

B. Convergence Speed and Computational Efficiency 

Any UC strategy for real-time smart grid systems must 
meet specified computational efficiency and convergence 
speed requirements. ML-MetaUC metrics are mostly affected 
by the metaheuristic optimization layer, which incorporates 
ACO and DE. The speed of convergence is measured by the 
number of iterations needed to get a stable or near-optimal 
solution, defined as a minimum change in the objective 
function value below a pre-specified threshold, such as 10)o. 
All scheduling processes, from demand forecasting to 
constraint validation, take seconds or minutes to compute. ML-
MetaUC escapes local minima better than ADMM or PyPSA 
due to its hybrid approach and metaheuristics' simultaneous 
exploration and exploitation. This speeds convergence and 
reduces computational cost, especially for complicated high-
dimensional load circumstances. 

w∑ ∑ BGDs@tq�ED,� �"� + GD#�PU�@��LD,� �", LD,�)� �" � +ID
���
�
  GD#%@�u$v5�LD,� �", LD,�
� �" � + 3D,� . SD,� �"H − A �)�"w < � (12) 

Figure 2 describes the convergence speed and 
computational efficiency. A comparison is made between the 
overall operating cost of the current iteration � and the cost of 
the iteration that came before it, denoted by � − 1 , for 
sustained convergence. This verification ensures that the 
optimization process remains stable. All generating units m that 
are spread out throughout the scheduling horizon impact the 
overall cost, which is an accumulation of many different 

components. The fuel consumption of the generator is 
expressed as a percentage of its output power, and the formula 

GDs@tq�ED,� �"�  indicates this proportion. The on/off state 

transitions of the unit are what determine the startup and 

shutdown costs GD#�PU�@� C<x GD#%@�u$v5 . 3D,� . SD,�  is used τo 

compensate for the violation of operational limitations, such as 
ramp rate limits or reserve shortfalls, expressing the 
compensation for the breach. The use of an extremely small 
threshold �, such as 10)o, is employed to ascertain the exact 
disparity between the total cost at iteration � and the objective 

function value A �)�"  from the preceding iteration. If the 
difference between the two values is smaller than � , the 
technique is deemed converged. This all-encompassing 
formulation, which considers elements related to feasibility and 
includes economic cost, makes it possible to make reliable and 
practical decisions despite operational uncertainty. 

 

 

Fig. 2.  Convergence speed and computational efficiency. 

C. Forecasting Accuracy (MAE and RMSE) 

The accuracy and effectiveness of UC choices depend on 
precise projections. The ML-MetaUC framework trains LR and 
RF models using weather and load data to anticipate energy 
peak demand. RMSE and MAE are used to evaluate these 
forecasts. Ignoring direction, MAE measures the average 
prediction error without considering its direction, whereas 
RMSE delivers a sensitive measure of prediction accuracy by 
penalizing greater errors more severely. Lower metrics indicate 
that actual load profiles match projected demand, allowing for 
more exact UC. Cost savings and system stability rely on 
accurate projections. Stopping the generator reduces reserve 
margins. The ML part of ML-MetaUC is more accurate than 
typical demand prediction methods because it can integrate 
nonlinear temporal patterns and external environmental factors. 
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Fig. 3.   Forecasting accuracy. 

yz{ = �
� ∑ w�� − ���w��
�    (13a) 

|yK{ = }�
� ∑ ��� − ����4��
�    (13b) 

Figure 3 and (13a, b) discuss the accuracy of the forecast. 
The RMSE and MAE values of a forecast are used to evaluate 
the accuracy of the prediction. The actual demand at time � is 

represented by �� , and ��� shows its standard deviation. When 
the RMSE is linearly associated with the MAE, the deviations 
are larger than they would otherwise be. A decrease in MAE or 
RMSE demonstrates an improvement in demand forecasting, 
which improves UC decisions by reducing the number of 
generator starts and shutdowns that were not essential. The 
ML-MetaUC framework can produce lower MAE and RMSE 
than standard estimate approaches because it uses RF and LR 
models. These models are trained against both historical and 
real-time environmental data. 

D. Constraint Violation Rate 

A low constraint violation rate means that the UC algorithm 
can manage the power system and generate unit operational 
and physical restrictions. Such restrictions include generator 
ramp-up and ramp-down timings (maximum and minimum), 
spinning reserve needs, and load balancing at each time step. 
ML-MetaUC avoids unstable or unworkable solutions by 
continuously monitoring and penalizing infractions using an 
objective-function-built punishment function. The violation 
rate is the total of all scheduling horizon intervals divided by 
the proportion of constraint breach intervals. The optimization 
approach balances technical feasibility and economic efficiency 
when violations are low. ML-MetaUC's adaptive scheduling 
considers real-time feedback to produce a commitment plan 
that is highly compliant and robust under different operating 
conditions, unlike classic solvers such as HEA-M-OS-CUCM 
and ADMM, which require strict penalty tuning or constraint 
simplification. 

 

Fig. 4.  Constraint violation rate (%). 

S~��C�~�< �C�� = �
�×I ∑ ∑ ��wSD,� > 0w�ID
���
�  (14) 

Equation (14) describes the constraint violation rate, and 
Figure 4 shows the results. The rate of constraint violation is 
one of the indicators that may be used to determine how often a 
solution goes over its technical or operational constraints. In 
this case, SD,�  indicates the severity of the violation for 

generator m  at time � , which may include a ramp rate 
exceedance or a reserve deficit. If there is a violation, the 
indicator function � . " will return a value of 1, and in all other 
situations it will be zero. The aggregate number of violations 
across all generating units and the whole time horizon is 
normalized by this statistic, which allows one to estimate the 
degree of trustworthiness associated with the solution. 
Although the optimization approach considers the system's 
operational restrictions, it does so under the assumption that the 
violation rate is low. Since it contains a punishment mechanism 
for constraint breaches inside the objective function, the ML-
MetaUC framework achieves better results than conventional 
approaches, such as PyPSA and QRL, as it prevents the 
algorithm from finding impractical solutions. 

IV. CONCLUSION  

This study presented a flexible and powerful energy 
management solution for smart grids, called ML-MetaUC, 
which combines machine learning-based demand forecasting 
with metaheuristic optimization for generator scheduling. 
ACO, LR, and RF work together to save costs, accelerate 
convergence, and adapt to dynamic and unexpected load 
circumstances. Experimental findings utilizing the IEEE 14-bus 
test system demonstrate that the framework improves 
operational reliability and efficiency. In future research, 
expanding the framework to larger and more complicated 
power networks can evaluate its scalability and performance in 
diverse operational environments. Deep learning models, such 
as LSTM or transformer networks, can help improve demand 
estimates, especially in non-stationary and non-linear settings. 
In addition, storage systems can be examined to manage 
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intermittency and unpredictability with RES. Real-time 
deployment using edge computing and IoT-based sensor 
infrastructure may help construct more autonomous and 
responsive smart grid systems. 
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