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ABSTRACT 

This study explores the use of Large Language Models (LLMs) for implementing personality-driven 

behavior in Non-Player Characters (NPCs) within games. A companion NPC leverages the OCEAN 

personality model to guide decision-making through natural language prompts, eliminating the need for 

traditional scripting or behavior trees. A stateless LLM combined with an automated prompt generator 

dynamically constructs context-aware prompts based on NPC traits, game states, and environmental 

factors. Implemented in the roguelike Rudantara RPG game, the companion NPC responds to gameplay 

conditions with behaviors aligned to its defined personality. The test results show that the system enables 

flexible and coherent decision-making and lowers the technical barrier to creating personalized behavior 

by allowing the player to interact using natural language instead of a complex behavior tree and scripting. 

Furthermore, to evaluate the decision-making process, participants with prior experience in RPG games 

were invited to play the prototype. Their responses indicated that the system was capable of simulating 

behavior aligned with the assigned personality traits. 

Keywords-NPC agent; Large Language Model (LLM); behavioral agents; game development  

I. INTRODUCTION  

Traditional behavioral agents, such as NPCs, often use rule-
based systems, FSMs, or behavior trees, which offer structured 
but predictable decision-making. These approaches lack 
adaptability, are difficult to scale, and offer limited support for 
personality-driven behavior customization. As user 
expectations for dynamic, intelligent gameplay grow, these 
methods fall short in delivering personalized or adaptive 
behavior based on personality traits. Integrating AI-driven 
solutions such as Large Language Models (LLMs) provides a 
promising alternative, enabling more adaptive, context-aware 
behavior through natural language understanding. 

Various studies investigate prompt generators to integrate 
LLMs in game development. One of the most common uses of 
LLMs in games is to enhance the ability of game agents, such 
as NPCs, to interact with the player. These models, known for 
their ability to understand and generate human-like text, are 
particularly well-suited for applications that require dynamic 
and adaptive systems [1]. Various studies have discussed 
different aspects of game agents that can be integrated with 
LLMs, replacing traditional methods in game AI programming 
[2]. An example of integration of LLMs into games is to 
generate conversation on the run [3-5], which enhances the 
interactivity of conversational NPCs. Furthermore, the ability 
of LLMs to process and generate natural language, combined 
with their massive trained data, is a significant advantage in 
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developing dynamic, engaging, and rich content with 
traditional methods. Numerous studies have shown that LLMs 
are capable of generating high-quality dynamic in-game 
narratives, missions/quests, and objectives [6-9]. LLMs have 
also been proven to perform well in generating educational 
content in educational games [5, 10-12]. 

In addition to generating text-based content, several studies 
utilized LLMs as behavior agents to make decisions in games 
[13-16]. However, integrating LLMs as behavior agents can be 
challenging due to the unpredictable nature of LLMs. LLMs 
are designed to generate output based on probabilities derived 
from their training data, which can result in unexpected 
behavior. This inconsistency may not align with the context, 
narrative, or gameplay mechanics. To provide more coherent 
and contextually relevant responses, LLM integration requires 
a prompt generator that bridges the game's current state and the 
LLM by crafting prompts that encourage contextually relevant 
responses. The objective of a dynamic prompt generator is to 
translate the context, environment, NPC, and player states and 
actions, alongside a predefined behavioral guideline, into a 
text-based prompt to control unpredictability and reduce 
unwanted responses, allowing for more immersive and 
coherent experiences in interactive environments. 

This study developed an automated prompt generator that 
leverages stateless LLMs to drive behavior agents based on 
personality traits through natural language input. Although 
supported by underlying code to execute actions, this system 
enables psychological traits to serve as the primary driver of 
NPC decision-making. To achieve this, the system relies on an 
LLM to interpret the psychological traits and translate them 
into context-appropriate actions. Rudantara, an action Role-
Playing Game (RPG), was developed as the environment of the 
proposed agent. Specifically, the agents act as companions for 
the player. The modular system architecture combines memory, 
state, and environment modules to supply relevant context, 
allowing the LLM to generate decisions that align with the 
companion's defined personality. Through this setup, the aim is 
to demonstrate how natural language and psychological models 
can be combined to produce more expressive and customizable 
NPC behaviors.  

II. PROPOSED METHOD 

The proposed solution employs a stateless AI architecture, 
utilizing widely available free tools, such as the Gemini Pro 
API, to simulate the LLM-based NPC. The system relies 
heavily on the ability to design effective full context prompts to 
ensure continuity and relevancy in the companion's 
interactions. Thus, it is important to design an automated 
prompt generator that can trigger the correct response from the 
LLM using natural language. To ensure that the agent can 
generate structured and contextually appropriate prompts, an 
architecture was designed, composed of multiple 
interconnected modules, each having a distinct role. These 
modules work in tandem to process inputs and environments, 
generate prompts, and refine responses based on contextual 
cues, ensuring efficient and coherent interaction. As illustrated 
in Figure 1, the companion agent's architecture consists of five 
key modules, each contributing the necessary data for the 
prompt generator to create an accurate prompt.  

 

Fig. 1.  System architecture of the LLM-based behavior agent. 

A. Large Language Model (LLM) 

The LLM module is the external part of the system, 
responsible for processing the prompt and returning a response. 
The proposed model uses Gemini Pro as the LLM solution. 
This service offers access to the LLM through the Google AI 
Gemini API using an HTTP Request. The free version comes 
with several constraints, such as maximum requests and tokens 
per minute, which were adequate for this study.  

B. Action Module 

The action module functions as an automated prompt 
generator, responsible for designing prompts using data from 
the memory and state modules, and communicating with the 
LLM via UnityWebRequest through a Google Apps Script that 
executes the Gemini API. In addition to generating prompts, it 
parses the JSON-formatted responses and forwards relevant 
information to the memory module (for long-term summaries) 
and the state module (for companion actions). 

C. Environment Module 

The environment module is responsible for gathering 
information about the player's surroundings. It collects various 
statistics such as enemies detected with their IDs, players, and 
statistics. The detection system uses vision with viewing 
distance, viewing height, and field of view set to 5 units, 6 
units, and 150°, respectively.   

D. State Module 

This module regulates the companion using a finite state 
machine with two main states: combat (active engagement 
based on LLM input) and wavering (default following 
behavior). It also manages enemy detection through the Vision 
submodule, storing enemy data to be used by the action module 
during prompt generation.  
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Fig. 2.  Screenshots from Rudantara. Top: menu, character stats, items, and upgrades. Bottom: various gameplay events. 

E. Memory Module 

The memory module is responsible for returning the most 
relevant events that occurred previously. The NPC's memory is 
split into two parts: temporary and long-term. The short-term 
module logs each companion-player event and its frequency in 
temporary memory, and the LLM retrieves the three most 
recent events from this memory for prompt generation.  

The long-term memory stores LLM-generated summaries 
of past events to guide consistent future actions in similar 
situations. This memory is part of the LLM response from a 
previous request in the form of a sentence. Additionally, each 
memory is attached to an attribute named recency to represent 
the age of the memory. The recency value is decaying, 
decreasing each time a new memory is added to the long-term 
memory module. The decaying formula of the memory is: 

������� � ������� ∗ 0.9   (1) 

When the recency value is below the threshold of 0.25, the 
entry is wiped. This mechanism is necessary to limit memory 
usage since each entry is a set of sentences.  

III. RUDANTARA 

Rudantara is a 3D third-person hack-and-slash game 
prototype developed to test the proposed model. The game can 
be categorized as a rougelike RPG that contains rougelike 
components such as a procedurally generated level, a 
randomized loot system, and perma-death. In the gameplay, the 
player controls an anime-style character equipped with a sword 
as a melee weapon. The player's character can perform basic 
attacks and special attacks that deal more damage but require 
mana and cooldown. In its current version, the game features 
two types of enemies: Throntle and Bull Boss. The Throntle 
(short for thorned turtle) has two variants: the smaller and 
weaker one, and the bigger and stronger one. When the player 
reaches the other end of the level, he faces the Bull Boss. 
Defeating the Bull Boss ends the game, after which the player 
can start a new session with an increased difficulty level. 
Figure 2 presents various screenshots from Rudantara. 

To help the player through the level, the game implements a 
friendly NPC (usually called companion) to aid the player. The 
companion will follow the player's character throughout the 
game. Whenever a specific event is happening, the companion 
will perform an action based on its traits. The companion has 2 

states: combat and wandering. When not in combat, the 
companion has one action called "sightseeing", where he 
simply follows the player's character. During combat, the 
companion has seven types of predefined actions during the 
game. The actions are as follows. 

• Focus on attacking one target. 

• Attack the nearest seen enemy. 

• Protect your partner by taunting enemies, tanking the 
damage. 

• Protect your partner by luring enemies far from your 
partner. 

• Seek protection from your partner. 

• Flee from the battle to a safe place. 

• Regroup with your partner. 

IV. PROMPT DESIGN 

The action of the companion relies on the LLM response 
triggered by the prompt. The challenge here is to design a 
prompt that is capable of generating the correct response by 
using a stateless LLM. The prompt must be able to provide 
crucial information to produce a relevant action. This section 
describes the overall architecture of the prompt. Due to the 
length of the prompt and its response, the full text from tests 
with various scenarios, along with the gameplay video, can be 
seen in [17]. The design template of the prompt contains the 
following. 

A. Context 

The context consists of the game description that includes 
the environment, types and descriptions of enemies, the goal, 
and the role of the NPC. This content part is uniform for all 
generated prompts.  

B. Personality 

The personality of the NPC is defined by five properties of 
the OCEAN model: 

1. Openness: curious, adventurous, prefers changes, and likes 

to take risks. 

2. Conscientiousness: organized and reliable. 
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3. Extraversion: Energetic and able to initiate/engage action. 

4. Agreeableness: Friendly and cooperative. 

5. Neuroticism: Anxious, volatile, and pessimistic. 

The OCEAN personality model, commonly called the Big 
Five personality traits, is a commonly used method to add a 
human-like personality to virtual agents [18, 19]. Several 
studies have demonstrated that the OCEAN personality model 
serves as an effective framework for guiding LLMs in 
generating NPC dialogues and behaviors [19, 20]. This 
approach allows users to modify the NPC's behavior using a 
more humane way, and LLMs to generate responses that align 
with an NPC's predefined personality, ensuring that their 
interactions, while emergent, remain coherent within the NPC's 
characteristics. The player can modify these values by 
accessing the companion settings in the main menu and 
adjusting each trait from the value of 0 to 1 (Figure 3). In the 
prompt, these personality traits are uniform throughout the 
game session, unless changed in-game by the player from the 
option in the main menu.  

 

 

Fig. 3.  The companion's settings, based on five personality traits. 

C. Summary 

The summary contains two parts: the companion's current 
state and its distance to the player, followed by the overall 
result from the previous action. The overall result is part of the 
LLM response that describes the environment, action, and 
intention of the companion. This information is necessary so 
that the LLM can generate an action relevant to the previous 
condition. 

D. Recent Actions and Events 

This part of the prompt contains information on the most 
recent action and its frequency. It acts as a short-term memory 
intended to give the LLM the current condition that affects the 
companion. This information is generated by the memory 
module.  

E. Player and NPC's Current Status 

This section of the prompt provides details about the player 
and their companion, outlining their current condition. It is 
crucial for describing their status, particularly the health 
information, which triggers healing and covering actions when 
needed.  

F. Template of Expected Response from the LLM  

The last part of the prompt describes how the LLM should 
respond and how it should form the response. It starts with 
informing the LLM that the response should be returned in 
JSON format using key and value. The next part of the 
template is to choose one of the seven actions to be performed 
by the companion. If the first action is selected (focus on 
attacking one target), the LLM should provide one specific 
target. Furthermore, since there is a possibility that the target is 
unreachable or no longer exists, the LLM must provide an 
alternative action that does not require a target, such as 
regrouping or seeking protection from the partner.  

V. TESTING 

The test was performed in two parts. The first one evaluates 
the validity and consistency of the prompt and the effect of 
personality traits on the response generated by the LMM on 
actions. The second part measures the performance of the 
proposed system based on the feedback of the respondents.  

A. Validity Testing 

In the first test, different personality trait settings were 
examined to generate unique and varied companion action 
outputs. To create personality combinations, common 
companion behaviors found in games were referenced. This 
research identifies three types of companion personalities 
commonly seen in commercial games: Protector, who 
prioritizes shielding their partner from danger; Leader, who 
actively engages in battle while supporting the player; and 
Rogue, who is highly unpredictable and often indifferent to the 
player's well-being. A Wildcard personality was also added, 
which was intended to act randomly without any pattern at all. 
Although this personality is rare in commercial games, it is 
interesting to observe how the traits affect the action.  

Since decision-making is done by the LLM, it is important 
to understand how the LLM maps the OCEAN to these 
personalities. To determine appropriate trait combinations, the 
LLM was prompted to generate suitable OCEAN values for 
each role. The following description and value combination are 
concluded based on the response from the LLM.  

1. Protector (P): Prioritizing the safety of the player, he 

requires high discipline. Openness: Low, 

Conscientiousness: High, Extraversion: Moderate-to-High, 

Agreeableness: High, Neuroticism: Low. 

2. Leader (L): Leading the player in engaging the battle, he is 

highly disciplined and reliable during battle. Openness: 

Moderate-to-High, Conscientiousness: High, Extraversion: 

High, Agreeableness: Moderate-to-High, Neuroticism: 

Low. 

3. Rogue (R): Prioritizing personal gain rather than 

discipline, acts independently, is open to creativity, but not 

a reliable companion to work as a team. Openness: High, 

Conscientiousness: Moderate, Extraversion: Low-to-

Moderate, Agreeableness: Low, Neuroticism: High. 

4. Wildcard (W): He is chaotic and tends to make random, 

impulsive decisions. Its action is unpredictable and has no 
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pattern at all. Openness: Moderate to High, 

Conscientiousness: Low to Moderate, Extraversion: Any, 

Agreeableness: Low, Neuroticism: High. 

In this test, the game was played using each personality 
type, and the actions and decisions generated by the LLM were 
collected in response. To focus on battle-related behavior, non-
combat responses were filtered out (action 7). Table I shows 
the frequency of each action assigned to the companion type 
and the personality setting. 

TABLE I.  PERSONALITY AND ACTION MAPPING 

Type 
Personality Settings Action (%) 

O C E A N 1 2 3 4 5 6 

P 0.5 0.9 0.5 1 0.4 19 31 42 0 0 8 

L 0.9 0.5 1 0.7 0.2 42 2 19 35 2 0 

R 0.9 0.3 0.8 0.2 0.9 58 37 0 3 0 2 

W 0.8 0.3 0.5 0.1 0.9 25 20 12 21 12 10 

 
Figure 4 shows companion dialogs with the types Protector, 

Leader, and Rogue. Similar to the previous text, the dialogues 
show the characteristics of the companion. The Protector 
advises the player to stay back into safety, the Leader leads and 
suggests an action to the player, and the Rogue tries to take 
care of the enemy by itself. Additionally, the Wildcard 
dialogue is a mix between these three personalities without any 
specific pattern. 

 

(a) 

 

(b) 

(c) 

Fig. 4.  Two example dialogues of the companion with Protector (a), 

Leader (b), and Rogue (c) personalities. 

B. Usability Testing 

The second test aimed to evaluate the impact of the 
proposed system on the experience, engagement, and perceived 
intelligence of the NPC. User testing involved eight 
participants with good knowledge and experience in gaming. 
Based on short interviews, all invited participants had at least 5 
hours of gaming sessions per week. Before the test, the 
participant was informed about the objective of the 
investigation and the expected results. The player was also 
informed regarding the OCEAN-based NPC's traits, since this 
method is uncommon in commercial games. During the test, 
respondents were guided to engage with various in-game 
scenarios to assess the agent's ability to deliver appropriate 
responses. After completing the game session, participants 
were asked to complete a questionnaire consisting of six 
Likert-scale questions, ranging from 1 (strongly disagree) to 5 
(strongly agree), as follows: 

1. The game offers a good experience in terms of engagement 

and interaction quality. 

2. The game mechanic is challenging, yet fair, encouraging 

players to replay the game. 

3. The companion is responsive and able to react to changes 

in real time. 

4. The companion dialogues are compatible with situations 

that occur during the game. 

5. The companion's actions are coherent with the current 

player's actions. 

6. The proposed model could be a feature in commercial 

games in the near future.  

TABLE II.  QUESTIONNAIRE RESPONSES 

Q 
Assessment 

Total AVG STDEV 
1 2 3 4 5 

Q1 0 1 1 5 1 30 3.75 1.95 

Q2 0 2 0 4 2 30 3.75 1.67 

Q3 0 1 0 4 3 33 4.12 1.82 

Q4 0 0 3 2 3 32 4 1.52 

Q5 0 0 2 4 2 32 4 1.67 

Q6 0 0 2 1 5 35 4.37 2.07 

 
Table II shows the results of the questionnaire. The 

participants responded positively to all aspects of the proposed 
system. The highest average score (4.37) was recorded for Q6, 
indicating a strong agreement that the model has the potential 
to be featured in commercial games. High scores were also 
observed in Q3 (M = 4.12) and Q4-5 (M = 4.00), suggesting 
that the companion NPC was perceived as responsive, with 
dialogue and actions well-aligned to gameplay context. 
Meanwhile, general aspects such as overall experience (Q1) 
and game mechanics (Q2) also received favorable responses 
(both M = 3.75), indicating that the game was engaging and 
fairly challenging. Standard deviation values ranged from 1.52 
to 2.07, reflecting moderate variability among participants but 
no indication of outlier responses. Overall, the results support 
the conclusion that the system delivers a coherent and context-
aware NPC experience and was positively received by the 
participants in terms of functionality, interaction quality, and 
future applicability. 

C. Constraints and Limitations 

Although the test results demonstrated that the proposed 
method can simulate decision-making for companion NPCs in 
RPG games, several limitations emerged. Delayed NPC 
responses was a key issue, mainly due to inconsistent LLM 
response times rather than network instability. Although minor 
delays could be masked by expanding the NPC's detection 
range to give it more reaction time, occasional significant lags 
negatively impacted responsiveness. To address this, fallback 
behaviors, such as following the player or attacking nearby 
enemies, were implemented. Another limitation involved the 
use of the free-tier Gemini Pro, which imposed strict time-
based quotas and placed requests in a non-priority queue. These 
restrictions caused delays and limited the number of 
simultaneous users. Although mitigated by allowing only one 
user at a time during the tests, this constraint could be resolved 
by switching to a higher-tier LLM service or deploying a 
dedicated open-source LLM server. 
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VI. CONCLUSIONS AND FUTURE WORKS 

This study explored the use of LLMs to enable personality-
driven behavior in NPCs through natural language input. By 
integrating the OCEAN personality model with an automated 
prompt generator, this study demonstrated how psychological 
traits can guide stateless LLMs in making context-aware 
decisions without relying on traditional scripted logic. 
Implemented in the Rudantara RPG prototype, the system 
allows NPC behavior to be flexibly defined using trait values 
and dynamically translated into in-game actions. The modular 
architecture, consisting of memory, state, and environment 
modules, provides the necessary context to the LLM, ensuring 
consistency and relevance in decision-making. The tests 
showed that the system produced believable and varied NPC 
actions aligned with their assigned personalities, offering a 
more intuitive and customizable approach to character 
behavior.  

This method lowers the technical barrier for behavior 
design, allowing developers or players to shape NPC responses 
through high-level trait input rather than code. Although 
current limitations include the reliance on external LLM 
services and a fixed set of action templates, future work will 
focus on expanding behavioral diversity, reducing latency 
through local model deployment, and exploring additional 
psychological models for even greater flexibility in personality-
driven game AI. Furthermore, while this research focuses on 
the RPG genre, the proposed system can be adapted to various 
other game genres with minimal modifications. Its modular 
design allows for easy integration into different gameplay 
mechanics and narrative structures, enhancing its applicability 
across diverse game types. 
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