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ABSTRACT

This study explores the use of Large Language Models (LLMs) for implementing personality-driven
behavior in Non-Player Characters (NPCs) within games. A companion NPC leverages the OCEAN
personality model to guide decision-making through natural language prompts, eliminating the need for
traditional scripting or behavior trees. A stateless LLM combined with an automated prompt generator
dynamically constructs context-aware prompts based on NPC traits, game states, and environmental
factors. Implemented in the roguelike Rudantara RPG game, the companion NPC responds to gameplay
conditions with behaviors aligned to its defined personality. The test results show that the system enables
flexible and coherent decision-making and lowers the technical barrier to creating personalized behavior
by allowing the player to interact using natural language instead of a complex behavior tree and scripting.
Furthermore, to evaluate the decision-making process, participants with prior experience in RPG games
were invited to play the prototype. Their responses indicated that the system was capable of simulating
behavior aligned with the assigned personality traits.

Keywords-NPC agent; Large Language Model (LLM); behavioral agents; game development

I. INTRODUCTION

Traditional behavioral agents, such as NPCs, often use rule-
based systems, FSMs, or behavior trees, which offer structured
but predictable decision-making. These approaches lack
adaptability, are difficult to scale, and offer limited support for
personality-driven  behavior  customization. As  user
expectations for dynamic, intelligent gameplay grow, these
methods fall short in delivering personalized or adaptive
behavior based on personality traits. Integrating Al-driven
solutions such as Large Language Models (LLMs) provides a
promising alternative, enabling more adaptive, context-aware
behavior through natural language understanding.

Various studies investigate prompt generators to integrate
LLMs in game development. One of the most common uses of
LLMs in games is to enhance the ability of game agents, such
as NPCs, to interact with the player. These models, known for
their ability to understand and generate human-like text, are
particularly well-suited for applications that require dynamic
and adaptive systems [1]. Various studies have discussed
different aspects of game agents that can be integrated with
LLMs, replacing traditional methods in game Al programming
[2]. An example of integration of LLMs into games is to
generate conversation on the run [3-5], which enhances the
interactivity of conversational NPCs. Furthermore, the ability
of LLMs to process and generate natural language, combined
with their massive trained data, is a significant advantage in
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developing dynamic, engaging, and rich content with
traditional methods. Numerous studies have shown that LLMs
are capable of generating high-quality dynamic in-game
narratives, missions/quests, and objectives [6-9]. LLMs have
also been proven to perform well in generating educational
content in educational games [5, 10-12].

In addition to generating text-based content, several studies
utilized LLMs as behavior agents to make decisions in games
[13-16]. However, integrating LL.Ms as behavior agents can be
challenging due to the unpredictable nature of LLMs. LLMs
are designed to generate output based on probabilities derived
from their training data, which can result in unexpected
behavior. This inconsistency may not align with the context,
narrative, or gameplay mechanics. To provide more coherent
and contextually relevant responses, LLM integration requires
a prompt generator that bridges the game's current state and the
LLM by crafting prompts that encourage contextually relevant
responses. The objective of a dynamic prompt generator is to
translate the context, environment, NPC, and player states and
actions, alongside a predefined behavioral guideline, into a
text-based prompt to control unpredictability and reduce
unwanted responses, allowing for more immersive and
coherent experiences in interactive environments.

This study developed an automated prompt generator that
leverages stateless LLMs to drive behavior agents based on
personality traits through natural language input. Although
supported by underlying code to execute actions, this system
enables psychological traits to serve as the primary driver of
NPC decision-making. To achieve this, the system relies on an
LLM to interpret the psychological traits and translate them
into context-appropriate actions. Rudantara, an action Role-
Playing Game (RPG), was developed as the environment of the
proposed agent. Specifically, the agents act as companions for
the player. The modular system architecture combines memory,
state, and environment modules to supply relevant context,
allowing the LLM to generate decisions that align with the
companion's defined personality. Through this setup, the aim is
to demonstrate how natural language and psychological models
can be combined to produce more expressive and customizable
NPC behaviors.

II. PROPOSED METHOD

The proposed solution employs a stateless Al architecture,
utilizing widely available free tools, such as the Gemini Pro
API, to simulate the LLM-based NPC. The system relies
heavily on the ability to design effective full context prompts to
ensure continuity and relevancy in the companion's
interactions. Thus, it is important to design an automated
prompt generator that can trigger the correct response from the
LLM using natural language. To ensure that the agent can
generate structured and contextually appropriate prompts, an
architecture ~ was  designed, composed of multiple
interconnected modules, each having a distinct role. These
modules work in tandem to process inputs and environments,
generate prompts, and refine responses based on contextual
cues, ensuring efficient and coherent interaction. As illustrated
in Figure 1, the companion agent's architecture consists of five
key modules, each contributing the necessary data for the
prompt generator to create an accurate prompt.
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Fig. 1. System architecture of the LLM-based behavior agent.

A. Large Language Model (LLM)

The LLM module is the external part of the system,
responsible for processing the prompt and returning a response.
The proposed model uses Gemini Pro as the LLM solution.
This service offers access to the LLM through the Google Al
Gemini API using an HTTP Request. The free version comes
with several constraints, such as maximum requests and tokens
per minute, which were adequate for this study.

B. Action Module

The action module functions as an automated prompt
generator, responsible for designing prompts using data from
the memory and state modules, and communicating with the
LLM via UnityWebRequest through a Google Apps Script that
executes the Gemini API. In addition to generating prompts, it
parses the JSON-formatted responses and forwards relevant
information to the memory module (for long-term summaries)
and the state module (for companion actions).

C. Environment Module

The environment module is responsible for gathering
information about the player's surroundings. It collects various
statistics such as enemies detected with their IDs, players, and
statistics. The detection system uses vision with viewing
distance, viewing height, and field of view set to 5 units, 6
units, and 150°, respectively.

D. State Module

This module regulates the companion using a finite state
machine with two main states: combat (active engagement
based on LLM input) and wavering (default following
behavior). It also manages enemy detection through the Vision
submodule, storing enemy data to be used by the action module
during prompt generation.
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Fig. 2.

E. Memory Module

The memory module is responsible for returning the most
relevant events that occurred previously. The NPC's memory is
split into two parts: temporary and long-term. The short-term
module logs each companion-player event and its frequency in
temporary memory, and the LLM retrieves the three most
recent events from this memory for prompt generation.

The long-term memory stores LLM-generated summaries
of past events to guide consistent future actions in similar
situations. This memory is part of the LLM response from a
previous request in the form of a sentence. Additionally, each
memory is attached to an attribute named recency to represent
the age of the memory. The recency value is decaying,
decreasing each time a new memory is added to the long-term
memory module. The decaying formula of the memory is:

recency = recency * 0.9 N

When the recency value is below the threshold of 0.25, the
entry is wiped. This mechanism is necessary to limit memory
usage since each entry is a set of sentences.

III. RUDANTARA

Rudantara is a 3D third-person hack-and-slash game
prototype developed to test the proposed model. The game can
be categorized as a rougelike RPG that contains rougelike
components such as a procedurally generated level, a
randomized loot system, and perma-death. In the gameplay, the
player controls an anime-style character equipped with a sword
as a melee weapon. The player's character can perform basic
attacks and special attacks that deal more damage but require
mana and cooldown. In its current version, the game features
two types of enemies: Throntle and Bull Boss. The Throntle
(short for thorned turtle) has two variants: the smaller and
weaker one, and the bigger and stronger one. When the player
reaches the other end of the level, he faces the Bull Boss.
Defeating the Bull Boss ends the game, after which the player
can start a new session with an increased difficulty level.
Figure 2 presents various screenshots from Rudantara.

To help the player through the level, the game implements a
friendly NPC (usually called companion) to aid the player. The
companion will follow the player's character throughout the
game. Whenever a specific event is happening, the companion
will perform an action based on its traits. The companion has 2

Choose an Upgrade

Amethyst Blade

Screenshots from Rudantara. Top: menu, character stats, items, and upgrades. Bottom: various gameplay events.

states: combat and wandering. When not in combat, the
companion has one action called "sightseeing", where he
simply follows the player's character. During combat, the
companion has seven types of predefined actions during the
game. The actions are as follows.

e Focus on attacking one target.
e Attack the nearest seen enemy.

e Protect your partner by taunting enemies, tanking the
damage.

e Protect your partner by luring enemies far from your
partner.

e Seek protection from your partner.
® Flee from the battle to a safe place.

e Regroup with your partner.

IV. PROMPT DESIGN

The action of the companion relies on the LLM response
triggered by the prompt. The challenge here is to design a
prompt that is capable of generating the correct response by
using a stateless LLM. The prompt must be able to provide
crucial information to produce a relevant action. This section
describes the overall architecture of the prompt. Due to the
length of the prompt and its response, the full text from tests
with various scenarios, along with the gameplay video, can be
seen in [17]. The design template of the prompt contains the
following.

A. Context

The context consists of the game description that includes
the environment, types and descriptions of enemies, the goal,
and the role of the NPC. This content part is uniform for all
generated prompts.

B. Personality

The personality of the NPC is defined by five properties of
the OCEAN model:

1. Openness: curious, adventurous, prefers changes, and likes
to take risks.

2. Conscientiousness: organized and reliable.
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3. Extraversion: Energetic and able to initiate/engage action.
4. Agreeableness: Friendly and cooperative.
5. Neuroticism: Anxious, volatile, and pessimistic.

The OCEAN personality model, commonly called the Big
Five personality traits, is a commonly used method to add a
human-like personality to virtual agents [18, 19]. Several
studies have demonstrated that the OCEAN personality model
serves as an effective framework for guiding LLMs in
generating NPC dialogues and behaviors [19, 20]. This
approach allows users to modify the NPC's behavior using a
more humane way, and LLMs to generate responses that align
with an NPC's predefined personality, ensuring that their
interactions, while emergent, remain coherent within the NPC's
characteristics. The player can modify these values by
accessing the companion settings in the main menu and
adjusting each trait from the value of O to 1 (Figure 3). In the
prompt, these personality traits are uniform throughout the
game session, unless changed in-game by the player from the
option in the main menu.

<
(J
Q:
—
@
=0
| SAVE SETTINGS |

Fig. 3. The companion's settings, based on five personality traits.

C. Summary

The summary contains two parts: the companion's current
state and its distance to the player, followed by the overall
result from the previous action. The overall result is part of the
LLM response that describes the environment, action, and
intention of the companion. This information is necessary so
that the LLM can generate an action relevant to the previous
condition.

D. Recent Actions and Events

This part of the prompt contains information on the most
recent action and its frequency. It acts as a short-term memory
intended to give the LLM the current condition that affects the
companion. This information is generated by the memory
module.

E. Player and NPC's Current Status

This section of the prompt provides details about the player
and their companion, outlining their current condition. It is
crucial for describing their status, particularly the health
information, which triggers healing and covering actions when
needed.

F. Template of Expected Response from the LLM

The last part of the prompt describes how the LLM should
respond and how it should form the response. It starts with
informing the LLM that the response should be returned in
JSON format using key and value. The next part of the
template is to choose one of the seven actions to be performed
by the companion. If the first action is selected (focus on
attacking one target), the LLM should provide one specific
target. Furthermore, since there is a possibility that the target is
unreachable or no longer exists, the LLM must provide an
alternative action that does not require a target, such as
regrouping or seeking protection from the partner.

V. TESTING

The test was performed in two parts. The first one evaluates
the validity and consistency of the prompt and the effect of
personality traits on the response generated by the LMM on
actions. The second part measures the performance of the
proposed system based on the feedback of the respondents.

A. Validity Testing

In the first test, different personality trait settings were
examined to generate unique and varied companion action
outputs. To create personality combinations, common
companion behaviors found in games were referenced. This
research identifies three types of companion personalities
commonly seen in commercial games: Protector, who
prioritizes shielding their partner from danger; Leader, who
actively engages in battle while supporting the player; and
Rogue, who is highly unpredictable and often indifferent to the
player's well-being. A Wildcard personality was also added,
which was intended to act randomly without any pattern at all.
Although this personality is rare in commercial games, it is
interesting to observe how the traits affect the action.

Since decision-making is done by the LLM, it is important
to understand how the LLM maps the OCEAN to these
personalities. To determine appropriate trait combinations, the
LLM was prompted to generate suitable OCEAN values for
each role. The following description and value combination are
concluded based on the response from the LLM.

1. Protector (P): Prioritizing the safety of the player, he
requires high discipline. Openness: Low,
Conscientiousness: High, Extraversion: Moderate-to-High,
Agreeableness: High, Neuroticism: Low.

2. Leader (L): Leading the player in engaging the battle, he is
highly disciplined and reliable during battle. Openness:
Moderate-to-High, Conscientiousness: High, Extraversion:
High, Agreeableness: Moderate-to-High, Neuroticism:
Low.

3. Rogue (R): Prioritizing personal gain rather than
discipline, acts independently, is open to creativity, but not
a reliable companion to work as a team. Openness: High,
Conscientiousness: Moderate, Extraversion: Low-to-
Moderate, Agreeableness: Low, Neuroticism: High.

4. Wildcard (W): He is chaotic and tends to make random,
impulsive decisions. Its action is unpredictable and has no
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pattern at all. Openness: Moderate to High,
Conscientiousness: Low to Moderate, Extraversion: Any,
Agreeableness: Low, Neuroticism: High.

In this test, the game was played using each personality
type, and the actions and decisions generated by the LLM were
collected in response. To focus on battle-related behavior, non-
combat responses were filtered out (action 7). Table I shows
the frequency of each action assigned to the companion type
and the personality setting.

TABLE L. PERSONALITY AND ACTION MAPPING
Type Personality Settings Action (%)
[0) C E A N 1 2 3 4 5 6
P 05109 05 1 04 |19 [ 31 |42 0 0 8
L 09 ] 05 1 07 102 [42] 2 19 [ 35| 2 0
R 091 03/08[02]09]|58]|37[0 3 0 2
W 108]03]05[01[09][25]20]12]21]12]10

Figure 4 shows companion dialogs with the types Protector,
Leader, and Rogue. Similar to the previous text, the dialogues
show the characteristics of the companion. The Protector
advises the player to stay back into safety, the Leader leads and
suggests an action to the player, and the Rogue tries to take
care of the enemy by itself. Additionally, the Wildcard
dialogue is a mix between these three personalities without any
specific pattern.

Pannng'll deal with the \ f"' } I'll keep you away from it,
) nearest enemies, stay don't worry, just focus on
back » o illing the big one!

<ieFEIfO0US OUr attack to ‘r } We're doing this great!
take downthesfhorntle! M "4 Keep it up!
- | W U

) - Looks like Il hENE'Td ke
¥ '« care of Thorntle 9 fdyself.

Fig. 4. Two example dialogues of the companion with Protector (a),
Leader (b), and Rogue (c) personalities.

B. Usability Testing

The second test aimed to evaluate the impact of the
proposed system on the experience, engagement, and perceived
intelligence of the NPC. User testing involved eight
participants with good knowledge and experience in gaming.
Based on short interviews, all invited participants had at least 5
hours of gaming sessions per week. Before the test, the
participant was informed about the objective of the
investigation and the expected results. The player was also
informed regarding the OCEAN-based NPC's traits, since this
method is uncommon in commercial games. During the test,
respondents were guided to engage with various in-game
scenarios to assess the agent's ability to deliver appropriate
responses. After completing the game session, participants
were asked to complete a questionnaire consisting of six
Likert-scale questions, ranging from 1 (strongly disagree) to 5
(strongly agree), as follows:

1. The game offers a good experience in terms of engagement
and interaction quality.

2. The game mechanic is challenging, yet fair, encouraging
players to replay the game.

3. The companion is responsive and able to react to changes
in real time.

4. The companion dialogues are compatible with situations
that occur during the game.

5. The companion's actions are coherent with the current
player's actions.

6. The proposed model could be a feature in commercial
games in the near future.

TABLEIL  QUESTIONNAIRE RESPONSES
Q [ 2Ass‘*s;me“t 5| Total | AVG | STDEV
QL [ o | 1 [ 1151 30 375 1.9
Q2 o020 4] 2] 3 3.75 1.67
Q3 o0l 1043 3 412 1.82
Q4 [ 0032 3] 3 4 152
Q5 [0l 0 214 2] 3 4 167
6 01021115 3 437 2.07

Table II shows the results of the questionnaire. The
participants responded positively to all aspects of the proposed
system. The highest average score (4.37) was recorded for Q6,
indicating a strong agreement that the model has the potential
to be featured in commercial games. High scores were also
observed in Q3 (M = 4.12) and Q4-5 (M = 4.00), suggesting
that the companion NPC was perceived as responsive, with
dialogue and actions well-aligned to gameplay context.
Meanwhile, general aspects such as overall experience (Q1)
and game mechanics (Q2) also received favorable responses
(both M = 3.75), indicating that the game was engaging and
fairly challenging. Standard deviation values ranged from 1.52
to 2.07, reflecting moderate variability among participants but
no indication of outlier responses. Overall, the results support
the conclusion that the system delivers a coherent and context-
aware NPC experience and was positively received by the
participants in terms of functionality, interaction quality, and
future applicability.

C. Constraints and Limitations

Although the test results demonstrated that the proposed
method can simulate decision-making for companion NPCs in
RPG games, several limitations emerged. Delayed NPC
responses was a key issue, mainly due to inconsistent LLM
response times rather than network instability. Although minor
delays could be masked by expanding the NPC's detection
range to give it more reaction time, occasional significant lags
negatively impacted responsiveness. To address this, fallback
behaviors, such as following the player or attacking nearby
enemies, were implemented. Another limitation involved the
use of the free-tier Gemini Pro, which imposed strict time-
based quotas and placed requests in a non-priority queue. These
restrictions caused delays and limited the number of
simultaneous users. Although mitigated by allowing only one
user at a time during the tests, this constraint could be resolved
by switching to a higher-tier LLM service or deploying a
dedicated open-source LLM server.
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VI. CONCLUSIONS AND FUTURE WORKS

This study explored the use of LLMs to enable personality-
driven behavior in NPCs through natural language input. By
integrating the OCEAN personality model with an automated
prompt generator, this study demonstrated how psychological
traits can guide stateless LLMs in making context-aware
decisions without relying on traditional scripted logic.
Implemented in the Rudantara RPG prototype, the system
allows NPC behavior to be flexibly defined using trait values
and dynamically translated into in-game actions. The modular
architecture, consisting of memory, state, and environment
modules, provides the necessary context to the LLM, ensuring
consistency and relevance in decision-making. The tests
showed that the system produced believable and varied NPC
actions aligned with their assigned personalities, offering a
more intuitive and customizable approach to character
behavior.

This method lowers the technical barrier for behavior
design, allowing developers or players to shape NPC responses
through high-level trait input rather than code. Although
current limitations include the reliance on external LLM
services and a fixed set of action templates, future work will
focus on expanding behavioral diversity, reducing latency
through local model deployment, and exploring additional
psychological models for even greater flexibility in personality-
driven game Al. Furthermore, while this research focuses on
the RPG genre, the proposed system can be adapted to various
other game genres with minimal modifications. Its modular
design allows for easy integration into different gameplay
mechanics and narrative structures, enhancing its applicability
across diverse game types.
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