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ABSTRACT 

Cheon-Kim-Kim-Song (CKKS)-based Homomorphic Encryption (HE) allows encrypted data to undergo 
approximate calculations. This makes it particularly suitable for real-world applications that rely on 

floating-point operations, like signal processing and encrypted machine learning. Despite this advantage, 

most current systems use fixed bootstrapping schedules that activate regardless of the actual noise level in 

the encrypted data. This inflexible design leads to unnecessary bootstrapping, higher memory usage, and 

slower processing, especially when dealing with different data formats and file sizes. To overcome these 

challenges, we introduce the Adaptive User-guided Resilient Approach using CKKS (AURA-CKKS), a new 

encryption method featuring a dynamic, noise-sensitive bootstrapping process. In order to help the system 

decide whether bootstrapping is required, the AURA-CKKS algorithm first accepts user-defined 

parameters, such as noise thresholds and bootstrapping preferences. Before calculations start, the 

algorithm estimates noise growth by doing an initial examination of the ciphertext parameters. The 

algorithm constantly checks noise levels during encrypted operations to ensure that bootstrapping is only 

activated when required, improving efficiency and preventing unnecessary calculations. Throughout the 

homomorphic operation cycle, this adaptive technique preserves the integrity of the ciphertext, minimizes 
processing time, and permits effective management of computational resources. Test results show that 

AURA-CKKS can boost bootstrapping efficiency by up to 46%, reduce memory usage by around 39%, 

and increase processing speed by over 51% compared to standard CKKS methods. This positions AURA-

CKKS as a powerful and adaptable solution for secure, encrypted computation. Experimental results 

demonstrate that AURA-CKKS significantly outperforms existing CKKS implementations in terms of 

throughput, scalability, and noise management, making it a practical and efficient solution for secure 
computation. 

Keywords-homomorphic encryption; CKKS, AURA-CKKS; adaptive bootstrapping; noise threshold; encrypted 

computation; memory optimization; throughput enhancement; selective encryption 

I. INTRODUCTION  

Advances in encryption, particularly those related to cloud 
computing and AI-based data analysis, are driving a growing 
interest in privacy-preserving technologies like Fully 
Homomorphic Encryption (FHE), Secure Multiparty 
Computation (SMPC), and Zero-Knowledge Proofs (ZKPs). 
Post-Quantum Cryptography (PQC), especially lattice-based 
schemes like such as NTRU and Ring-LWE, which also serve 
as the foundation for many Homomorphic Encryption (HE) 
techniques, has accelerated due to the development of quantum 

computing. With HE at their core, these developing paradigms 
seek to offer effective, scalable, and secure solutions for 
safeguarding private information in cooperative and outsourced 
settings. 

HE is ideal for secure outsourcing, encrypted machine 
learning, and privacy-preserving analytics since it enables 
computation on encrypted data without the need for decryption. 
An important feature of the Cheon–Kim–Kim–Song (CKKS) 
scheme is its ability to enable approximate arithmetic over real 
and floating-point integers, which is necessary for applications 



Engineering, Technology & Applied Science Research Vol. 15, No. 4, 2025, 25984-25992 25985  
 

www.etasr.com Yasmin & Devi: An Adaptive User-Guided Resilient Approach for Dynamic Bootstrapping in … 

 

such as neural network inference, statistical modeling, and 
signal processing. 

Notwithstanding its benefits, CKKS has significant 
practical drawbacks. Every homomorphic process adds noise to 
the ciphertext, making decryption difficult above a certain 
threshold [1]. Conventional CKKS uses bootstrapping at 
predetermined intervals, which results in overhead and 
redundant procedures [2]. Its rigid workflows lack adaptability 
to data features like size or type [3]. Most implementations 
precompute all evaluation keys (e.g., rotation, relinearization, 
bootstrapping), consuming memory even if they are not needed 
[4]. 

Recent studies have focused on optimizing CKKS 
bootstrapping to improve accuracy and performance. Among 
the noteworthy developments are methods designed for binary 
ciphertexts [5], methods that use polynomial approximations 
and inverse sine functions to increase numerical precision [6], 
and improved full-RNS implementations that achieve higher 
accuracy and efficiency without the need for sparse secret keys 
[1]. These methods still use static or preset refresh mechanisms 
even though they enhance certain elements of bootstrapping. 

The adaptive, noise-threshold-aware bootstrapping method 
introduced by Adaptive User-guided Resilient Approach using 
CKKS (AURA-CKKS) only activates when the noise budget of 

the ciphertext drops below a threshold that the user specifies. 
This strategy avoids needless bootstrapping, saves processing 
resources, and extends the ciphertext utility during encrypted 
evaluation, in contrast to static or interval-based alternatives. 
Unlike conventional static bootstrapping, it enhances 
scalability and efficiency, as indicated in Table I. 

In addition to adaptive bootstrapping, AURA-CKKS 
presents several other innovations: 

 User-guided policies: Allows file-level encryption 
parameter customization for different data types (e.g., text, 
audio, and image). 

 Context-aware strategy: Automatically adjusts encryption 
and bootstrapping based on file size, structure, and type. 

 On-demand key generation: Generates evaluation keys only 
when needed, reducing memory overhead. 

 Real-time monitoring: Tracks noise budget, bootstrapping 
frequency, and throughput for dynamic optimization. 

 Improved scalability: Delivers better speed, memory usage, 
and throughput across diverse workloads than CKKS, 
Brakerski/Fan-Vercauteren (BFV), and Brakerski–Gentry–
Vaikuntanathan (BGV). 

TABLE I.  COMPARATIVE ANALYSIS OF BOOTSTRAPPING TECHNIQUES IN CKKS-BASED FRAMEWORKS 

Dimension AURA-CKKS [1] [7] [8] [6] [5] 

Goal 

Adaptive, file-aware 

encryption with 

noise threshold-

based dynamic 

bootstrapping 

Boost CKKS 

bootstrapping's 

accuracy and 

effectiveness in a 

full-RNS 

environment 

Generalize full-RNS 

CKKS for reduced 

temporary moduli and 

efficient sine 

approximation 

Evaluate various 

bootstrapping 

methods and their 

performance in 

open-source libraries 

Improve 

bootstrapping with 

high precision by 

employing minimax 

polynomials 

For ciphertexts 

encoding binary 

values, enable 

bootstrapping 

Target data 

type 

Actual files using 

CKKS vector 

encoding (text, 

images, etc.) 

Vectors of general 

numbers (CKKS) 

Vectors of real 

numbers (CKKS) 

Vectors of real 

numbers (CKKS) 

Value 

approximation 

(CKKS) 

Binary (bit-level) 

data in CKKS 

Bootstrapping 

trigger 

User-defined noise 

threshold with real-

time monitoring 

Calculation at fixed 

depth with integrated 

bootstrapping 

Fixed-depth 

computation with 

integrated 

bootstrapping 

Analysis of existing 

methods without 

introducing new 

triggers 

Consistent 

bootstrapping in any 

situation 

Only ciphertexts 

containing binary-

encoded values are 

subject to 

bootstrapping 

Adaptivity 

Dynamic 

bootstrapping when 

noise threshold is 

crossed 

Static — built-in 

circuit depth 

bootstrapping 

Static bootstrapping 

based on circuit depth 

Comparative 

analysis without 

introducing new 

adaptivity 

mechanisms 

Static — uses heavy 

function 

approximation 

Static — predefines 

the use case for 

binary 

Throughput 

optimization 

Prevents 

unnecessary 

bootstrapping 

Absence of a clear 

performance 

emphasis 

Reduces number of 

non-scalar 

multiplications by 

about half compared 

to Chebyshev method 

Evaluates 

throughput across 

different schemes 

Emphasizes 

precision over speed 

Not tuned for 

performance 

 

II. RELATED WORK 

By allowing processing on encrypted data without 
decryption, HE provides privacy benefits over more 
conventional techniques like Rivest–Shamir–Adleman (RSA), 
ElGamal, and Paillier [9]. Although there are still issues with 
high latency, ciphertext extension, and parameter tweaking, 
FHE approaches, including multi-key FHE, BGV, and Dijk–
Gentry–Halevi–Vaikuntanathan (DGHV), have been 

investigated for cloud security [10-13]. Lattice-based 
cryptography has also been explored for HE integration due to 
its low decryption complexity [11]. 

Researchers have suggested HE-based General Matrix 
Multiplication (HEGMM) using Single Instruction Multiple 
Data (SIMD) for faster encrypted matrix processing [14] to 
increase performance, and Partially Homomorphic Encryption 
(PHE) for secure distributed estimation with reduced overhead 
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[15, 16] and. Integrating Trusted Execution Environments 
(TEEs) into FHE, particularly through Paillier-based Partially 
FHE (PFHE), improves secure multiplication and trust [17]. 
Applications that protect privacy, such as secure medical image 
diagnosis, are made possible by HE in conjunction with deep 
learning and blockchain [18]. Error handling is a major 
distinction between FHE and Somewhat Homomorphic 
Encryption (SWHE). While SWHE is constrained by noise 
growth, FHE employs bootstrapping to manage noise and 
enable infinite operations [19]. To solve data ownership 
problems in shared computing environments, a Multi-Key FHE 
(MK-FHE) architecture with a verifiable Homomorphic 
Message Authenticator (HMAC) has been developed. This 
method maintains computational integrity while enabling 
precise statistics [20]. 

III. METHODOLOGY 

The proposed methodology utilizes AURA-CKKS to 
enable efficient and adaptive HE across diverse data types and 
workloads. By including a user-configurable, runtime-adaptive 
layer that dynamically modifies encryption settings according 
to input characteristics and user-defined constraints like 
security, latency, and precision, it improves on the 
conventional CKKS approach. The data flow across the 
discrete, modular components of the AURA-CKKS system is 
depicted in Figure 1.  

 

 
Fig. 1.  AURA-CKKS system data flow. 

Using the Frontend GUI, the user uploads a data file and 
meta-parameters, which are then sent to the Preprocessor for 
vectorization and CKKS encoding. After being encrypted, the 
data are sent to the Homomorphic Evaluator, where iterative 
procedures are performed. A runtime noise check is carried out 
during this calculation phase, and bootstrapping is initiated to 
refresh the ciphertext if the noise level exceeds the threshold 
(τ). The user receives the decoded output at the end of the 
Decryption step. This modular flow guarantees scalability, 
noise reduction, and effective encrypted computing. 

Input processing, metadata interpretation, encoding, 
parameter selection, encryption, optional bootstrapping, 
encrypted computation, and decryption are all steps in the 
structured pipeline that AURA uses. Using heuristics or user-
defined metadata/UI preferences, AURA incorporates 
customizable intelligence at every stage. Following data 
encoding into complex vectors, AURA adjusts the CKKS 
parameters (ring dimension, modulus depth, and scaling factor) 
according to priorities and workload. Bootstrapping is used if 
noise levels approach the predefined threshold. To ensure safe 
and effective processing, all computations are performed on 
encrypted data, and decryption and decoding occur only at the 
very end. 

This approach not only preserves the core advantages of 
CKKS (approximate arithmetic on encrypted vectors) but also 
enhances usability, performance, and applicability across 
varied computational scenarios by tuning the cryptographic 
behavior to the workload's depth, data type, and performance 
constraints. 

A. Overview of AURA-CKKS Processing Phases 

1) User Input Phase 

In the user input phase, the AURA-CKKS system begins by 
accepting two primary types of input from the user: 

 Data File (D): Users primarily wish to encrypt and process 
these data in a homomorphic manner. Text, pictures, audio, 
video, are among the supported formats. By extracting 
pertinent characteristics or numerical representations, the 
system transforms these into intricate vector formats that 
are compatible with CKKS. 

 Choosing a configuration file or GUI: In addition to the 
data, the user provides meta-parameters that guide AURA-
CKKS's handling of the data via a configuration file or 
GUI. These meta-parameters form the tuple shown in (1): 

Meta � �data_type,
precision_level, latency_pref, security_bits� (1) 

where: 

 data_type : Indicates the type of input data, enabling 
AURA-CKKS to select the appropriate encoding and 
parameter scale. For instance, the term "image" is 
transformed into pixel matrices, "text" is numerically 
encoded and tokenized, "audio" is transformed into 
frequency-domain vectors, and "video" is transformed into 
time-sequenced picture frames. 
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 precision_level: Defines the required numerical accuracy 
level for the calculation. It establishes the modulus chain 
depth indirectly and the CKKS scaling factor (Δ). High 
precision (≈240) yields more accurate results but requires 
longer chains and deeper levels. Low precision (≈220) is 
faster but less accurate yet. This relationship is 
mathematically defined as: 

Δ � 2���� ! "#_$ %! e.g., Δ = 2'( for high precision 

  latency_pref: This parameter indicates the user's preferred 
processing speed, which assists AURA balance 
computation time and accuracy: The "low_latency" setting 
selects shallower levels with less bootstrapping, the 
"high_accuracy" setting permits longer computations with 
deeper modulus chains, and the "energy_efficient" setting 
focuses on reducing noise growth. Internally, this modifies 
the number of allowable operations L before bootstrapping: 

L*+, = ƒ(latency_pref)  

 security_bits : Indicates the desired level of encryption 
security in bits (e.g., 128, 192, 256) and defines the ring 
dimension N (e.g., 2¹⁵ or 2¹⁶), the selection of primes q   in 
the modulus chain, and the defense against lattice-based 
assaults. This is formally guaranteed by use of: 

λ � security_bits ⇒ N, q  satisfy HE standard constrains  

2) Preprocessing and Encryption Phase 

AURA-CKKS system converts real-world data into 
ciphertext appropriate for homomorphic computing by 
processing the input data file (D) through the preprocessing and 
encryption stages. This procedure entails: 

 Data vectorization (preprocessing phase): First, the raw 
input file D , which may be text, audio, or an image, is 
transformed into a real-valued vector, as defined in (2): 

x = [x8 , x9, … , x# ]  ∈  ℝ#   (2) 

where each element x  denotes pixel intensity if D  is an 
image. If D  is audio, then x  denotes the waveform's 
sampled amplitudes If D is text, then x  denotes the token 
embeddings. By using vectorization, the input data are 
guaranteed to be in a format that can be encoded into the 
CKKS plaintext space. 

 CKKS encoding: The real vector is then converted into a 
complex-valued polynomial that is encrypted by AURA-
CKKS using the CKKS encoder defined in (3): 

x> = Encode (x, Δ)    (3) 

where x> ∈ ℂ[X]/(XB + 1)  is the encoded plaintext 
polynomial and Δ ∈  ℝE  is the scaling factor, selected 
according to the user-specified precision_level . This 
encoding approximately preserves mathematical fidelity 
while mapping the real vector into a plaintext polynomial. 

 Encryption with public key: The first ciphertext is obtained 
by encrypting the encoded plaintext x>  with the CKKS 
public key pk, yielding the initial ciphertext defined by (4): 

ct( = Encrypt (x>, pk)     (4) 

where ct( ∈ ∁  is the ciphertext in the CKKS ciphertext 

space ∁⊆ RJ
9 , with RJ = ℤJ[X]/(XB + 1). The ciphertext is 

an approximate encryption, satisfying ct( ≈ x + e , with 
‖e‖ < Δ . The condition ‖e‖ < Δ  ensures that the noise 
does not overwhelm the plaintext values during 
homomorphic operations. 

3) Operation Execution Phase (on Encrypted Data) 

As soon as the encrypted ciphertext ct(  is prepared, 
AURA-CKKS evaluates the intended computational function 
homomorphically. This function is denoted as f(∙): ℝ# → ℝ#. 
Any arithmetic circuit that the user wants to evaluate, such as a 
filtering operation, a polynomial transformation, or a neural 
network layer, can be represented by this function. The CKKS 
method supports additions and multiplications, which are 
included in the iterative operations executed in encrypted form 
over T steps as shown in (5): 

ct = f(ct − 1), for  i = 1,2, … , T  (5) 

However, the ciphertext's noise level increases with each 
homomorphic multiplication. One way to model this growth is 
Noise (ct )  ≈ Noise (ct U8)  ⋅ ΔW/Δ. Following multiplication, 
ΔW is the scaling factor (often ΔW > Δ). The entire cumulative 
encryption error in the ciphertext is measured by noise (ct ). 

4) Bootstrapping Check Phase 

To address the rising levels of noise, a runtime-adaptive 
bootstrapping is introduced by AURA-CKKS. The system 
checks the noise threshold following the operation defined by 
(6) and (7): 

If  Noise(ct ) > τ, then   (6) 

ct 
W ← Bootstrap(ct     (7) 

where: 

 τ  is the predefined noise tolerance threshold, determined 
based on the desired decryption accuracy. 

 Bootstrap(∙) is the CKKS bootstrapping function that re-
encrypts the data and reduces the noise level. 

Bootstrapping performs the following functions: 

 Refreshes ct  by replacing it with a new ciphertext ct 
W that 

encodes the identical plaintext for ct .  

 Resets the modulus chain and scale, which homomorphic 
multiplications have previously consumed.  

 Maintains semantic integrity by keeping the underlying 
plaintext essentially unchanged: 

ct 
W = Bootstrap( ct ) ≈ x + e#�], with ‖e#�]‖ < Δ  

5) Decryption Phase 

Once all homomorphic operations (and any intermediate 
bootstrapping) are completed, the system holds the final 
ciphertext ct_ . This ciphertext is then decrypted using the 
secret key (denoted sk) to retrieve the approximate encoded 
result as in (8): 

>̀  = Decrypt (ct_ , sk)    (8) 
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After decryption, decoding is performed using the inverse 
of the CKKS encoding scheme as in (9): 

y = Decode (y>, Δ′)    (9) 

The overall transformation can be summarized as  

y = Decode (Decrypt (ct_ , sk) , Δ′)  

B. AURA-CKKS Workflow 

Algorithm 1 demonstrates the general steps of the AURA-
CKKS system: user input, preprocessing and encryption, 
iterative homomorphic computation with optional 
bootstrapping, and final decryption and output. 

Algorithm 1: AURA-CKKS workflow for 

Adaptive HE 

Inputs: 

D: User data file (text,image,audio) 

Meta={data_type,precision_level,latency_

pref,security_bits} 

Outputs: 

y: Final decoded plaintext output 

Procedure: 

1. User input phase: 

 (a) Upload data file D and meta-

parameters  

 (b) Extract: data_type, precision_level, 

latency_pref, security_bits 

2. Preprocessing & encryption phase: 

(a) x ← Vectorize(D) 

(b) Δ ← 2^(precision_level) 

(c) x> ← Encode(x,Δ) 

(d) ct₀ ← Encrypt(x>,pk) 
3. Computation phase: 

ct_current ← ct₀ 
for i = 1 to T do 

ct_next ← Apply_Homomorphic_Op(ct_ 

current) 

if Noise(ct_next) > noise_threshold, 

then 

ct_next ← Bootstrap(ct_next) 

end if 

ct_current ← ct_next 

end for 

4. Decryption phase: 

>̀ = Decrypt(ctT,sk) 

y=Decode( >̀,Δ′) 
5. Output phase: 

Return y 

The main notations and symbols used in this paper are 
listed in Table II, together with brief descriptions to ensure 
uniformity and clarity in the mathematical formulation and 
pseudocode representation of the AURA-CKKS system. 

C. Performance Evaluation Using Real-World Dataset 

To thoroughly evaluate the performance of our novel 
AURA-CKKS encryption scheme, we used 50 different 
English files from the Project Gutenberg repository to test 
AURA-CKKS on text data [21]. This dataset covers a broad 

spectrum of syntactic structures, vocabulary complexity, and 
document lengths. The efficacy and efficiency of the scheme in 
managing the subtleties of natural language can be evaluated 
by testing it on this diverse corpus. 

TABLE II.  KEY NOTATIONS AND SYMBOLS 

Symbol Description 

D User data file (text, image, audio, video) 

Meta 
{data_type, precision_level,
latency_pref,   security_bits} 

x ∈ ℝ  n Vectorized form of input data 

x̃ =  Encode(x, Δ) CKKS-encoded plaintext with scale Δ 

Δ 
Initial scale factor (based on 

precision_level) 

pk, sk 
Public and secret key pair for 

encryption/decryption 

ct( Initial ciphertext: ct( = Encrypt (x>, pk) 

ct  
Ciphertext at i-th operation: ct =

f(ct − 1) 

f(∙): ℝ# → ℝ# 
Homomorphic function (e.g., filter, 

classifier) 

Noise (ct ) Noise level of ciphertext after i operations 

ΔW 
Updated scale after homomorphic 

multiplication 

Τ Noise threshold for triggering bootstrapping 

ct 
W  Refreshed ciphertext after bootstrapping 

y> 
Decrypted CKKS plaintext: >̀  =

Decrypt (ct_ , sk) 

y Final decoded output: y = Decode (y>, Δ′) 

 

1) Graphical Representation of Dataset Properties 

The following bar charts illustrate how input variety affects 
AURA-CKKS performance by summarizing important aspects 
of the 50 text files. 

Figures 2(a) and 2(b) illustrate the estimated memory usage 
and encryption throughput for the 50 text files, respectively. 
Figure 2(a) shows a steady memory footprint with minimal 
variation across all files, as depicted by the purple bars that 
present memory consumption per file, which remains 
continuously around 350 MB. The encryption throughput (B/s) 
for 50 text files is shown on the right side of Figure 2(b). The 
throughput of each file is represented by a teal bar, which is 
based on the size of the file and the simulated encryption 
duration. In contrast to the consistent memory utilization, 
throughput fluctuates greatly; some files have low values, 
whereas others reach a peak of about 500,000 B/s. This 
variation is consistent with the simulation, which shows that for 
files with shorter encryption periods exhibit higher throughput. 

Figure 3 illustrates the decryption throughput for the 50 text 
files. The vertical axis quantifies the speed of decryption in B/s. 
The horizontal axis represents each of the 50 text files, 
numbered sequentially from 1 to 50. Each coral-collared bar 
corresponds to a specific file, and its height indicates the 
calculated decryption throughput for that file, determined by 
the file size and simulated decryption time.  

Figure 4 shows the noise budget per file using yellow bars, 
illustrating the remaining noise capacity in each of the 50 
encrypted text files after simulated homomorphic 
computations. The height of each bar, expressed in unitless 



Engineering, Technology & Applied Science Research Vol. 15, No. 4, 2025, 25984-25992 25989  
 

www.etasr.com Yasmin & Devi: An Adaptive User-Guided Resilient Approach for Dynamic Bootstrapping in … 

 

terms, represents the available noise budget: taller bars mean 
there is more space for additional operations without risking 
decryption failure, whereas shorter bars indicate the ciphertext 
is getting close to its noise threshold. Beyond this threshold, 
additional computation could jeopardize the accuracy of 
decryption. 

Certain file indices with much lower noise budgets, 
including 1, 11, 19, 37, and 41, are highlighted in the graph. 
These indicate locations where the threshold for ciphertext 
noise has almost been surpassed. In such circumstances, if 
more homomorphic operations are expected, the AURA-CKKS 
system will proactively activate its adaptive bootstrapping 
technique to minimize noise. Thus, the graph not only shows 
the amount of noise that accumulates across encrypted files, but 
it also indicates when the intelligent, noise-aware bootstrapping 
of AURA-CKKS would be used to preserve computation 
integrity. 

Figure 5 illustrates the noise budget change per file, 
highlighting AURA-CKKS's bootstrapping activity by showing 
how the noise budget fluctuates during file processing. 
Bootstrapping events that restore computational capability and 
lower ciphertext noise are represented by positive spikes. On 
the other hand, values that are negative or close to zero 
represent normal noise consumption from common 
homomorphic computations, suggesting a slow build-up of 
noise over time. 

AURA-CKKS uses a noise-level-based adaptive 
bootstrapping approach, with bootstrapping events clearly 
indicated by noticeable noise budget spikes at file indices 9, 17, 
29, and 43. This confirms AURA-CKKS's effective use of 
resources for safe homomorphic computing, showing that 
bootstrapping only begins when noise approaches a critical 
threshold. 

 

 
Fig. 2.  (a) Memory usage and (b) encrypted throughput of AURA-CKKS across 50 text files. 

 
Fig. 3.  Decryption throughput for 50 text files. 

 
Fig. 4.  Noise budget per file for 50 text files. 
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Fig. 5.  Noise budget change per file for 50 text files. 

IV. RESULTS 

Significant performance differences are observed when 
comparing BFV, BGV, CKKS, and the suggested AURA-

CKKS, with an emphasis on noise tolerance, memory 
utilization, and throughput for file sizes ranging from 100 KB 
to 1 MB. BFV works well in applications that call for precise 
discrete computations, supporting exact integer arithmetic [22]. 
BGV focuses on integer operations and provides greater 
parameter flexibility, controlling noise increase by modulus 
switching [23]. CKKS is effective for continuous encrypted 
data, such as images and signals, because it can perform 
approximate arithmetic on real or complex numbers [1]. These 
design variations highlight important trade-offs when selecting 
HE systems according to application requirements. AURA-
CKKS, particularly with larger datasets, yields significant 
efficiency advantages across a variety of workloads. 

Figure 6 shows a comparison of the performance of several 
HE methods. In Figure 6(a), BGV exhibits the lowest noise 
threshold before bootstrapping is required, followed by BFV, 
CKKS, and AURA-CKKS, which maintains the highest noise 
tolerance. In Figure 6(b), AURA-CKKS outperforms CKKS, 
BGV, and BFV, which exhibits the highest memory use. 
Finally, Figure 6(c) demonstrates AURA-CKKS's superior 
processing speed, showing that it attains the maximum 
throughput (MB/s). CKKS follows, whereas BFV and BGV 
fall behind. 

 

 
Fig. 6.  Comparison of HE methods across file sizes: (a) noise threshold, (b) memory usage, and (c) throughput. 

A distinct pattern emerges when examining cumulative 
noise growth without bootstrapping across various file sizes 
and types. Noise rises with file size for all formats (text, image, 
and audio). Text files exhibit the slowest increase in noise, 
whereas audio files accumulate noise the fastest, surpassing the 
bootstrapping threshold at smaller sizes. This demonstrates 
how the timing of bootstrapping and noise accumulation in HE 
systems are greatly influenced by data properties, including 
encoding and complexity. 

Figure 7 illustrates the inherent challenge of noise 
accumulation in HE. It plots the cumulative noise level in HE 
ciphertexts as a function of file size for different data types 
(text, image, and audio) without bootstrapping: 

 Exponential noise growth: In line with the intrinsic noise 
increase during HE operations, the graph shows a nonlinear 
increase in noise with file size. This suggests that larger 
files introduce higher noise due to increased computational 
complexity. 

 Data type dependency: Depending on the type of data, noise 
accumulation varies. Text accumulates the least, whereas 
exhibits the fastest, followed by images. This implies that 
noise is affected by data structures and encoding, with 
audio probably requiring more intricate or numerous 
procedures. 

 Bootstrapping threshold: The bootstrapping threshold is 
indicated by the red dashed line. The largest file size that 
can be processed without bootstrapping is indicated by the 
intersection of each noise curve with this line. Compared to 
text, audio and image data reach this limit earlier, 
suggesting that they require more frequent bootstrapping. 

Figure 8 illustrates the impact of applying bootstrapping to 
mitigate noise growth in HE. It plots a smoothed representation 
of the noise level against file size for different data types, this 
time with bootstrapping enabled: 

 Controlled noise: In contrast to Figure 7, the noise exhibits 
an increasing trend but remains under control. The "zig-
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zag" pattern reflects cycles of noise increase and decrease; 
noise builds up until the bootstrapping threshold is reached, 
at which point it resets. 

 Bootstrapping interval: The graph implicitly shows the 
effect of the bootstrapping interval. The steeper the upward 
slope, the faster the noise accumulates and the more 

frequently bootstrapping needs to be performed to maintain 
the noise level below the threshold. 

Comparing Figures 7 and 8 highlights the effectiveness of 
bootstrapping. While noise grows exponentially without 
bootstrapping, bootstrapping can maintain it at a quasi-stable 
level. 

 

 
Fig. 7.  Cumulative noise growth without bootstrapping per file type. 

 
Fig. 8.  Smoothed noise level vs. file size with bootstrapping enabled to control noise growth. 

V. CONCLUSION AND FUTURE WORK 

Adaptive User-guided Resilient Approach using Cheon-
Kim-Kim-Song (AURA-CKKS) enables Homomorphic 
Encryption (HE) of diverse data types, including text, images, 
and audio, via a secure, structured pipeline. This pipeline offers 
user-defined configurations, vectorization, CKKS-based 
encoding, encryption, homomorphic processing, and 
decryption. The main advantage of AURA-CKKS is its 
adaptive noise management, which maintains result fidelity 
during intricate calculations by fusing bootstrapping tests with 
noise-reduction strategies. According to the test results, 
AURA-CKKS outperforms standard CKKS, achieving up to 

46% increased bootstrapping efficiency, over 51% faster 
processing, and approximately 39% lower memory usage. 
These improvements demonstrate its scalability and 
dependability for encrypted applications that are sensitive to 
noise.  

Future development will add Multi-Party Computation 
(MPC) to AURA-CKKS to enable safe, cooperative 
processing, which is perfect for federated learning, privacy-
preserving analytics, and sensitive industries such as healthcare 
and finance. Additionally, the framework will be adapted for 
real-time and streaming data (such as time series, sensor feeds, 
and video) to enable low latency encrypted processing in 
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Internet of Things (IoT), edge computing, and multimedia 
systems. 

Although AURA-CKKS demonstrates significant 
improvements in processor speed, memory utilization, and 
bootstrapping efficiency, still has some drawbacks. For 
example, the performance in high-complexity jobs may be 
impacted if managing low noise thresholds for large files 
results in an increased bootstrapping frequency. Furthermore, 
widespread adoption in real-world systems may be hampered 
by the technical complexity of user-guided controls and 
dynamic bootstrapping. Finally, even though text, photos, and 
music are included in the current experimental scope, more 
study is required to assess performance with additional types of 
data, such as video, structured databases, and real-time streams. 
A major focus of our future research will be addressing these 
limitations by investigating optimization techniques that 
balance performance and noise thresholds, streamlining 
implementation for wider adoption, and extending the 
framework's functionality across various application domains. 
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