
Engineering, Technology & Applied Science Research Vol. 15, No. 4, 2025, 25984-25992 25984

www.etasr.com Yasmin & Devi: An Adaptive User-Guided Resilient Approach for Dynamic Bootstrapping in …

An Adaptive User-Guided Resilient Approach

for Dynamic Bootstrapping in Homomorphic

Encryption

S. Yasmin

Department of Computer Applications, B.S. Abdur Rahman Crescent Institute of Science & Technology,

Chennai, India

yasmins_ca_jan21@crescent.education

G. Shree Devi

Department of Computer Applications, B.S. Abdur Rahman Crescent Institute of Science & Technology,

Chennai, India

shreedevi@crescent.education (corresponding author)

Received: 10 May 2025 | Revised: 29 May 2025 and 11 June 2025 | Accepted: 16 June 2025

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.12045

ABSTRACT

Cheon-Kim-Kim-Song (CKKS)-based Homomorphic Encryption (HE) allows encrypted data to undergo
approximate calculations. This makes it particularly suitable for real-world applications that rely on

floating-point operations, like signal processing and encrypted machine learning. Despite this advantage,

most current systems use fixed bootstrapping schedules that activate regardless of the actual noise level in

the encrypted data. This inflexible design leads to unnecessary bootstrapping, higher memory usage, and

slower processing, especially when dealing with different data formats and file sizes. To overcome these

challenges, we introduce the Adaptive User-guided Resilient Approach using CKKS (AURA-CKKS), a new

encryption method featuring a dynamic, noise-sensitive bootstrapping process. In order to help the system

decide whether bootstrapping is required, the AURA-CKKS algorithm first accepts user-defined

parameters, such as noise thresholds and bootstrapping preferences. Before calculations start, the

algorithm estimates noise growth by doing an initial examination of the ciphertext parameters. The

algorithm constantly checks noise levels during encrypted operations to ensure that bootstrapping is only

activated when required, improving efficiency and preventing unnecessary calculations. Throughout the

homomorphic operation cycle, this adaptive technique preserves the integrity of the ciphertext, minimizes
processing time, and permits effective management of computational resources. Test results show that

AURA-CKKS can boost bootstrapping efficiency by up to 46%, reduce memory usage by around 39%,

and increase processing speed by over 51% compared to standard CKKS methods. This positions AURA-

CKKS as a powerful and adaptable solution for secure, encrypted computation. Experimental results

demonstrate that AURA-CKKS significantly outperforms existing CKKS implementations in terms of

throughput, scalability, and noise management, making it a practical and efficient solution for secure
computation.

Keywords-homomorphic encryption; CKKS, AURA-CKKS; adaptive bootstrapping; noise threshold; encrypted

computation; memory optimization; throughput enhancement; selective encryption

I. INTRODUCTION

Advances in encryption, particularly those related to cloud
computing and AI-based data analysis, are driving a growing
interest in privacy-preserving technologies like Fully
Homomorphic Encryption (FHE), Secure Multiparty
Computation (SMPC), and Zero-Knowledge Proofs (ZKPs).
Post-Quantum Cryptography (PQC), especially lattice-based
schemes like such as NTRU and Ring-LWE, which also serve
as the foundation for many Homomorphic Encryption (HE)
techniques, has accelerated due to the development of quantum

computing. With HE at their core, these developing paradigms
seek to offer effective, scalable, and secure solutions for
safeguarding private information in cooperative and outsourced
settings.

HE is ideal for secure outsourcing, encrypted machine
learning, and privacy-preserving analytics since it enables
computation on encrypted data without the need for decryption.
An important feature of the Cheon–Kim–Kim–Song (CKKS)
scheme is its ability to enable approximate arithmetic over real
and floating-point integers, which is necessary for applications

Engineering, Technology & Applied Science Research Vol. 15, No. 4, 2025, 25984-25992 25985

www.etasr.com Yasmin & Devi: An Adaptive User-Guided Resilient Approach for Dynamic Bootstrapping in …

such as neural network inference, statistical modeling, and
signal processing.

Notwithstanding its benefits, CKKS has significant
practical drawbacks. Every homomorphic process adds noise to
the ciphertext, making decryption difficult above a certain
threshold [1]. Conventional CKKS uses bootstrapping at
predetermined intervals, which results in overhead and
redundant procedures [2]. Its rigid workflows lack adaptability
to data features like size or type [3]. Most implementations
precompute all evaluation keys (e.g., rotation, relinearization,
bootstrapping), consuming memory even if they are not needed
[4].

Recent studies have focused on optimizing CKKS
bootstrapping to improve accuracy and performance. Among
the noteworthy developments are methods designed for binary
ciphertexts [5], methods that use polynomial approximations
and inverse sine functions to increase numerical precision [6],
and improved full-RNS implementations that achieve higher
accuracy and efficiency without the need for sparse secret keys
[1]. These methods still use static or preset refresh mechanisms
even though they enhance certain elements of bootstrapping.

The adaptive, noise-threshold-aware bootstrapping method
introduced by Adaptive User-guided Resilient Approach using
CKKS (AURA-CKKS) only activates when the noise budget of

the ciphertext drops below a threshold that the user specifies.
This strategy avoids needless bootstrapping, saves processing
resources, and extends the ciphertext utility during encrypted
evaluation, in contrast to static or interval-based alternatives.
Unlike conventional static bootstrapping, it enhances
scalability and efficiency, as indicated in Table I.

In addition to adaptive bootstrapping, AURA-CKKS
presents several other innovations:

 User-guided policies: Allows file-level encryption
parameter customization for different data types (e.g., text,
audio, and image).

 Context-aware strategy: Automatically adjusts encryption
and bootstrapping based on file size, structure, and type.

 On-demand key generation: Generates evaluation keys only
when needed, reducing memory overhead.

 Real-time monitoring: Tracks noise budget, bootstrapping
frequency, and throughput for dynamic optimization.

 Improved scalability: Delivers better speed, memory usage,
and throughput across diverse workloads than CKKS,
Brakerski/Fan-Vercauteren (BFV), and Brakerski–Gentry–
Vaikuntanathan (BGV).

TABLE I. COMPARATIVE ANALYSIS OF BOOTSTRAPPING TECHNIQUES IN CKKS-BASED FRAMEWORKS

Dimension AURA-CKKS [1] [7] [8] [6] [5]

Goal

Adaptive, file-aware

encryption with

noise threshold-

based dynamic

bootstrapping

Boost CKKS

bootstrapping's

accuracy and

effectiveness in a

full-RNS

environment

Generalize full-RNS

CKKS for reduced

temporary moduli and

efficient sine

approximation

Evaluate various

bootstrapping

methods and their

performance in

open-source libraries

Improve

bootstrapping with

high precision by

employing minimax

polynomials

For ciphertexts

encoding binary

values, enable

bootstrapping

Target data

type

Actual files using

CKKS vector

encoding (text,

images, etc.)

Vectors of general

numbers (CKKS)

Vectors of real

numbers (CKKS)

Vectors of real

numbers (CKKS)

Value

approximation

(CKKS)

Binary (bit-level)

data in CKKS

Bootstrapping

trigger

User-defined noise

threshold with real-

time monitoring

Calculation at fixed

depth with integrated

bootstrapping

Fixed-depth

computation with

integrated

bootstrapping

Analysis of existing

methods without

introducing new

triggers

Consistent

bootstrapping in any

situation

Only ciphertexts

containing binary-

encoded values are

subject to

bootstrapping

Adaptivity

Dynamic

bootstrapping when

noise threshold is

crossed

Static — built-in

circuit depth

bootstrapping

Static bootstrapping

based on circuit depth

Comparative

analysis without

introducing new

adaptivity

mechanisms

Static — uses heavy

function

approximation

Static — predefines

the use case for

binary

Throughput

optimization

Prevents

unnecessary

bootstrapping

Absence of a clear

performance

emphasis

Reduces number of

non-scalar

multiplications by

about half compared

to Chebyshev method

Evaluates

throughput across

different schemes

Emphasizes

precision over speed

Not tuned for

performance

II. RELATED WORK

By allowing processing on encrypted data without
decryption, HE provides privacy benefits over more
conventional techniques like Rivest–Shamir–Adleman (RSA),
ElGamal, and Paillier [9]. Although there are still issues with
high latency, ciphertext extension, and parameter tweaking,
FHE approaches, including multi-key FHE, BGV, and Dijk–
Gentry–Halevi–Vaikuntanathan (DGHV), have been

investigated for cloud security [10-13]. Lattice-based
cryptography has also been explored for HE integration due to
its low decryption complexity [11].

Researchers have suggested HE-based General Matrix
Multiplication (HEGMM) using Single Instruction Multiple
Data (SIMD) for faster encrypted matrix processing [14] to
increase performance, and Partially Homomorphic Encryption
(PHE) for secure distributed estimation with reduced overhead

Engineering, Technology & Applied Science Research Vol. 15, No. 4, 2025, 25984-25992 25986

www.etasr.com Yasmin & Devi: An Adaptive User-Guided Resilient Approach for Dynamic Bootstrapping in …

[15, 16] and. Integrating Trusted Execution Environments
(TEEs) into FHE, particularly through Paillier-based Partially
FHE (PFHE), improves secure multiplication and trust [17].
Applications that protect privacy, such as secure medical image
diagnosis, are made possible by HE in conjunction with deep
learning and blockchain [18]. Error handling is a major
distinction between FHE and Somewhat Homomorphic
Encryption (SWHE). While SWHE is constrained by noise
growth, FHE employs bootstrapping to manage noise and
enable infinite operations [19]. To solve data ownership
problems in shared computing environments, a Multi-Key FHE
(MK-FHE) architecture with a verifiable Homomorphic
Message Authenticator (HMAC) has been developed. This
method maintains computational integrity while enabling
precise statistics [20].

III. METHODOLOGY

The proposed methodology utilizes AURA-CKKS to
enable efficient and adaptive HE across diverse data types and
workloads. By including a user-configurable, runtime-adaptive
layer that dynamically modifies encryption settings according
to input characteristics and user-defined constraints like
security, latency, and precision, it improves on the
conventional CKKS approach. The data flow across the
discrete, modular components of the AURA-CKKS system is
depicted in Figure 1.

Fig. 1. AURA-CKKS system data flow.

Using the Frontend GUI, the user uploads a data file and
meta-parameters, which are then sent to the Preprocessor for
vectorization and CKKS encoding. After being encrypted, the
data are sent to the Homomorphic Evaluator, where iterative
procedures are performed. A runtime noise check is carried out
during this calculation phase, and bootstrapping is initiated to
refresh the ciphertext if the noise level exceeds the threshold
(τ). The user receives the decoded output at the end of the
Decryption step. This modular flow guarantees scalability,
noise reduction, and effective encrypted computing.

Input processing, metadata interpretation, encoding,
parameter selection, encryption, optional bootstrapping,
encrypted computation, and decryption are all steps in the
structured pipeline that AURA uses. Using heuristics or user-
defined metadata/UI preferences, AURA incorporates
customizable intelligence at every stage. Following data
encoding into complex vectors, AURA adjusts the CKKS
parameters (ring dimension, modulus depth, and scaling factor)
according to priorities and workload. Bootstrapping is used if
noise levels approach the predefined threshold. To ensure safe
and effective processing, all computations are performed on
encrypted data, and decryption and decoding occur only at the
very end.

This approach not only preserves the core advantages of
CKKS (approximate arithmetic on encrypted vectors) but also
enhances usability, performance, and applicability across
varied computational scenarios by tuning the cryptographic
behavior to the workload's depth, data type, and performance
constraints.

A. Overview of AURA-CKKS Processing Phases

1) User Input Phase

In the user input phase, the AURA-CKKS system begins by
accepting two primary types of input from the user:

 Data File (D): Users primarily wish to encrypt and process
these data in a homomorphic manner. Text, pictures, audio,
video, are among the supported formats. By extracting
pertinent characteristics or numerical representations, the
system transforms these into intricate vector formats that
are compatible with CKKS.

 Choosing a configuration file or GUI: In addition to the
data, the user provides meta-parameters that guide AURA-
CKKS's handling of the data via a configuration file or
GUI. These meta-parameters form the tuple shown in (1):

Meta � �data_type,
precision_level, latency_pref, security_bits� (1)

where:

 data_type : Indicates the type of input data, enabling
AURA-CKKS to select the appropriate encoding and
parameter scale. For instance, the term "image" is
transformed into pixel matrices, "text" is numerically
encoded and tokenized, "audio" is transformed into
frequency-domain vectors, and "video" is transformed into
time-sequenced picture frames.

Engineering, Technology & Applied Science Research Vol. 15, No. 4, 2025, 25984-25992 25987

www.etasr.com Yasmin & Devi: An Adaptive User-Guided Resilient Approach for Dynamic Bootstrapping in …

 precision_level: Defines the required numerical accuracy
level for the calculation. It establishes the modulus chain
depth indirectly and the CKKS scaling factor (Δ). High
precision (≈240) yields more accurate results but requires
longer chains and deeper levels. Low precision (≈220) is
faster but less accurate yet. This relationship is
mathematically defined as:

Δ � 2���� ! "#_$ %! e.g., Δ = 2'(for high precision

 latency_pref: This parameter indicates the user's preferred
processing speed, which assists AURA balance
computation time and accuracy: The "low_latency" setting
selects shallower levels with less bootstrapping, the
"high_accuracy" setting permits longer computations with
deeper modulus chains, and the "energy_efficient" setting
focuses on reducing noise growth. Internally, this modifies
the number of allowable operations L before bootstrapping:

L*+, = ƒ(latency_pref)

 security_bits : Indicates the desired level of encryption
security in bits (e.g., 128, 192, 256) and defines the ring
dimension N (e.g., 2¹⁵ or 2¹⁶), the selection of primes q in
the modulus chain, and the defense against lattice-based
assaults. This is formally guaranteed by use of:

λ � security_bits ⇒ N, q satisfy HE standard constrains

2) Preprocessing and Encryption Phase

AURA-CKKS system converts real-world data into
ciphertext appropriate for homomorphic computing by
processing the input data file (D) through the preprocessing and
encryption stages. This procedure entails:

 Data vectorization (preprocessing phase): First, the raw
input file D , which may be text, audio, or an image, is
transformed into a real-valued vector, as defined in (2):

x = [x8 , x9, … , x#] ∈ ℝ# (2)

where each element x denotes pixel intensity if D is an
image. If D is audio, then x denotes the waveform's
sampled amplitudes If D is text, then x denotes the token
embeddings. By using vectorization, the input data are
guaranteed to be in a format that can be encoded into the
CKKS plaintext space.

 CKKS encoding: The real vector is then converted into a
complex-valued polynomial that is encrypted by AURA-
CKKS using the CKKS encoder defined in (3):

x> = Encode (x, Δ) (3)

where x> ∈ ℂ[X]/(XB + 1) is the encoded plaintext
polynomial and Δ ∈ ℝE is the scaling factor, selected
according to the user-specified precision_level . This
encoding approximately preserves mathematical fidelity
while mapping the real vector into a plaintext polynomial.

 Encryption with public key: The first ciphertext is obtained
by encrypting the encoded plaintext x> with the CKKS
public key pk, yielding the initial ciphertext defined by (4):

ct(= Encrypt (x>, pk) (4)

where ct(∈ ∁ is the ciphertext in the CKKS ciphertext

space ∁⊆ RJ
9 , with RJ = ℤJ[X]/(XB + 1). The ciphertext is

an approximate encryption, satisfying ct(≈ x + e , with
‖e‖ < Δ . The condition ‖e‖ < Δ ensures that the noise
does not overwhelm the plaintext values during
homomorphic operations.

3) Operation Execution Phase (on Encrypted Data)

As soon as the encrypted ciphertext ct(is prepared,
AURA-CKKS evaluates the intended computational function
homomorphically. This function is denoted as f(∙): ℝ# → ℝ#.
Any arithmetic circuit that the user wants to evaluate, such as a
filtering operation, a polynomial transformation, or a neural
network layer, can be represented by this function. The CKKS
method supports additions and multiplications, which are
included in the iterative operations executed in encrypted form
over T steps as shown in (5):

ct = f(ct − 1), for i = 1,2, … , T (5)

However, the ciphertext's noise level increases with each
homomorphic multiplication. One way to model this growth is
Noise (ct) ≈ Noise (ct U8) ⋅ ΔW/Δ. Following multiplication,
ΔW is the scaling factor (often ΔW > Δ). The entire cumulative
encryption error in the ciphertext is measured by noise (ct).

4) Bootstrapping Check Phase

To address the rising levels of noise, a runtime-adaptive
bootstrapping is introduced by AURA-CKKS. The system
checks the noise threshold following the operation defined by
(6) and (7):

If Noise(ct) > τ, then (6)

ct
W ← Bootstrap(ct (7)

where:

 τ is the predefined noise tolerance threshold, determined
based on the desired decryption accuracy.

 Bootstrap(∙) is the CKKS bootstrapping function that re-
encrypts the data and reduces the noise level.

Bootstrapping performs the following functions:

 Refreshes ct by replacing it with a new ciphertext ct
W that

encodes the identical plaintext for ct .

 Resets the modulus chain and scale, which homomorphic
multiplications have previously consumed.

 Maintains semantic integrity by keeping the underlying
plaintext essentially unchanged:

ct
W = Bootstrap(ct) ≈ x + e#�], with ‖e#�]‖ < Δ

5) Decryption Phase

Once all homomorphic operations (and any intermediate
bootstrapping) are completed, the system holds the final
ciphertext ct_ . This ciphertext is then decrypted using the
secret key (denoted sk) to retrieve the approximate encoded
result as in (8):

>̀ = Decrypt (ct_ , sk) (8)

Engineering, Technology & Applied Science Research Vol. 15, No. 4, 2025, 25984-25992 25988

www.etasr.com Yasmin & Devi: An Adaptive User-Guided Resilient Approach for Dynamic Bootstrapping in …

After decryption, decoding is performed using the inverse
of the CKKS encoding scheme as in (9):

y = Decode (y>, Δ′) (9)

The overall transformation can be summarized as

y = Decode (Decrypt (ct_ , sk) , Δ′)

B. AURA-CKKS Workflow

Algorithm 1 demonstrates the general steps of the AURA-
CKKS system: user input, preprocessing and encryption,
iterative homomorphic computation with optional
bootstrapping, and final decryption and output.

Algorithm 1: AURA-CKKS workflow for

Adaptive HE

Inputs:

D: User data file (text,image,audio)

Meta={data_type,precision_level,latency_

pref,security_bits}

Outputs:

y: Final decoded plaintext output

Procedure:

1. User input phase:

 (a) Upload data file D and meta-

parameters

 (b) Extract: data_type, precision_level,

latency_pref, security_bits

2. Preprocessing & encryption phase:

(a) x ← Vectorize(D)

(b) Δ ← 2^(precision_level)

(c) x> ← Encode(x,Δ)

(d) ct₀ ← Encrypt(x>,pk)
3. Computation phase:

ct_current ← ct₀
for i = 1 to T do

ct_next ← Apply_Homomorphic_Op(ct_

current)

if Noise(ct_next) > noise_threshold,

then

ct_next ← Bootstrap(ct_next)

end if

ct_current ← ct_next

end for

4. Decryption phase:

>̀ = Decrypt(ctT,sk)

y=Decode(>̀,Δ′)
5. Output phase:

Return y

The main notations and symbols used in this paper are
listed in Table II, together with brief descriptions to ensure
uniformity and clarity in the mathematical formulation and
pseudocode representation of the AURA-CKKS system.

C. Performance Evaluation Using Real-World Dataset

To thoroughly evaluate the performance of our novel
AURA-CKKS encryption scheme, we used 50 different
English files from the Project Gutenberg repository to test
AURA-CKKS on text data [21]. This dataset covers a broad

spectrum of syntactic structures, vocabulary complexity, and
document lengths. The efficacy and efficiency of the scheme in
managing the subtleties of natural language can be evaluated
by testing it on this diverse corpus.

TABLE II. KEY NOTATIONS AND SYMBOLS

Symbol Description

D User data file (text, image, audio, video)

Meta
{data_type, precision_level,
latency_pref, security_bits}

x ∈ ℝ n Vectorized form of input data

x̃ = Encode(x, Δ) CKKS-encoded plaintext with scale Δ

Δ
Initial scale factor (based on

precision_level)

pk, sk
Public and secret key pair for

encryption/decryption

ct(Initial ciphertext: ct(= Encrypt (x>, pk)

ct
Ciphertext at i-th operation: ct =

f(ct − 1)

f(∙): ℝ# → ℝ#
Homomorphic function (e.g., filter,

classifier)

Noise (ct) Noise level of ciphertext after i operations

ΔW
Updated scale after homomorphic

multiplication

Τ Noise threshold for triggering bootstrapping

ct
W Refreshed ciphertext after bootstrapping

y>
Decrypted CKKS plaintext: >̀ =

Decrypt (ct_ , sk)

y Final decoded output: y = Decode (y>, Δ′)

1) Graphical Representation of Dataset Properties

The following bar charts illustrate how input variety affects
AURA-CKKS performance by summarizing important aspects
of the 50 text files.

Figures 2(a) and 2(b) illustrate the estimated memory usage
and encryption throughput for the 50 text files, respectively.
Figure 2(a) shows a steady memory footprint with minimal
variation across all files, as depicted by the purple bars that
present memory consumption per file, which remains
continuously around 350 MB. The encryption throughput (B/s)
for 50 text files is shown on the right side of Figure 2(b). The
throughput of each file is represented by a teal bar, which is
based on the size of the file and the simulated encryption
duration. In contrast to the consistent memory utilization,
throughput fluctuates greatly; some files have low values,
whereas others reach a peak of about 500,000 B/s. This
variation is consistent with the simulation, which shows that for
files with shorter encryption periods exhibit higher throughput.

Figure 3 illustrates the decryption throughput for the 50 text
files. The vertical axis quantifies the speed of decryption in B/s.
The horizontal axis represents each of the 50 text files,
numbered sequentially from 1 to 50. Each coral-collared bar
corresponds to a specific file, and its height indicates the
calculated decryption throughput for that file, determined by
the file size and simulated decryption time.

Figure 4 shows the noise budget per file using yellow bars,
illustrating the remaining noise capacity in each of the 50
encrypted text files after simulated homomorphic
computations. The height of each bar, expressed in unitless

Engineering, Technology & Applied Science Research Vol. 15, No. 4, 2025, 25984-25992 25989

www.etasr.com Yasmin & Devi: An Adaptive User-Guided Resilient Approach for Dynamic Bootstrapping in …

terms, represents the available noise budget: taller bars mean
there is more space for additional operations without risking
decryption failure, whereas shorter bars indicate the ciphertext
is getting close to its noise threshold. Beyond this threshold,
additional computation could jeopardize the accuracy of
decryption.

Certain file indices with much lower noise budgets,
including 1, 11, 19, 37, and 41, are highlighted in the graph.
These indicate locations where the threshold for ciphertext
noise has almost been surpassed. In such circumstances, if
more homomorphic operations are expected, the AURA-CKKS
system will proactively activate its adaptive bootstrapping
technique to minimize noise. Thus, the graph not only shows
the amount of noise that accumulates across encrypted files, but
it also indicates when the intelligent, noise-aware bootstrapping
of AURA-CKKS would be used to preserve computation
integrity.

Figure 5 illustrates the noise budget change per file,
highlighting AURA-CKKS's bootstrapping activity by showing
how the noise budget fluctuates during file processing.
Bootstrapping events that restore computational capability and
lower ciphertext noise are represented by positive spikes. On
the other hand, values that are negative or close to zero
represent normal noise consumption from common
homomorphic computations, suggesting a slow build-up of
noise over time.

AURA-CKKS uses a noise-level-based adaptive
bootstrapping approach, with bootstrapping events clearly
indicated by noticeable noise budget spikes at file indices 9, 17,
29, and 43. This confirms AURA-CKKS's effective use of
resources for safe homomorphic computing, showing that
bootstrapping only begins when noise approaches a critical
threshold.

Fig. 2. (a) Memory usage and (b) encrypted throughput of AURA-CKKS across 50 text files.

Fig. 3. Decryption throughput for 50 text files.

Fig. 4. Noise budget per file for 50 text files.

Engineering, Technology & Applied Science Research Vol. 15, No. 4, 2025, 25984-25992 25990

www.etasr.com Yasmin & Devi: An Adaptive User-Guided Resilient Approach for Dynamic Bootstrapping in …

Fig. 5. Noise budget change per file for 50 text files.

IV. RESULTS

Significant performance differences are observed when
comparing BFV, BGV, CKKS, and the suggested AURA-

CKKS, with an emphasis on noise tolerance, memory
utilization, and throughput for file sizes ranging from 100 KB
to 1 MB. BFV works well in applications that call for precise
discrete computations, supporting exact integer arithmetic [22].
BGV focuses on integer operations and provides greater
parameter flexibility, controlling noise increase by modulus
switching [23]. CKKS is effective for continuous encrypted
data, such as images and signals, because it can perform
approximate arithmetic on real or complex numbers [1]. These
design variations highlight important trade-offs when selecting
HE systems according to application requirements. AURA-
CKKS, particularly with larger datasets, yields significant
efficiency advantages across a variety of workloads.

Figure 6 shows a comparison of the performance of several
HE methods. In Figure 6(a), BGV exhibits the lowest noise
threshold before bootstrapping is required, followed by BFV,
CKKS, and AURA-CKKS, which maintains the highest noise
tolerance. In Figure 6(b), AURA-CKKS outperforms CKKS,
BGV, and BFV, which exhibits the highest memory use.
Finally, Figure 6(c) demonstrates AURA-CKKS's superior
processing speed, showing that it attains the maximum
throughput (MB/s). CKKS follows, whereas BFV and BGV
fall behind.

Fig. 6. Comparison of HE methods across file sizes: (a) noise threshold, (b) memory usage, and (c) throughput.

A distinct pattern emerges when examining cumulative
noise growth without bootstrapping across various file sizes
and types. Noise rises with file size for all formats (text, image,
and audio). Text files exhibit the slowest increase in noise,
whereas audio files accumulate noise the fastest, surpassing the
bootstrapping threshold at smaller sizes. This demonstrates
how the timing of bootstrapping and noise accumulation in HE
systems are greatly influenced by data properties, including
encoding and complexity.

Figure 7 illustrates the inherent challenge of noise
accumulation in HE. It plots the cumulative noise level in HE
ciphertexts as a function of file size for different data types
(text, image, and audio) without bootstrapping:

 Exponential noise growth: In line with the intrinsic noise
increase during HE operations, the graph shows a nonlinear
increase in noise with file size. This suggests that larger
files introduce higher noise due to increased computational
complexity.

 Data type dependency: Depending on the type of data, noise
accumulation varies. Text accumulates the least, whereas
exhibits the fastest, followed by images. This implies that
noise is affected by data structures and encoding, with
audio probably requiring more intricate or numerous
procedures.

 Bootstrapping threshold: The bootstrapping threshold is
indicated by the red dashed line. The largest file size that
can be processed without bootstrapping is indicated by the
intersection of each noise curve with this line. Compared to
text, audio and image data reach this limit earlier,
suggesting that they require more frequent bootstrapping.

Figure 8 illustrates the impact of applying bootstrapping to
mitigate noise growth in HE. It plots a smoothed representation
of the noise level against file size for different data types, this
time with bootstrapping enabled:

 Controlled noise: In contrast to Figure 7, the noise exhibits
an increasing trend but remains under control. The "zig-

Engineering, Technology & Applied Science Research Vol. 15, No. 4, 2025, 25984-25992 25991

www.etasr.com Yasmin & Devi: An Adaptive User-Guided Resilient Approach for Dynamic Bootstrapping in …

zag" pattern reflects cycles of noise increase and decrease;
noise builds up until the bootstrapping threshold is reached,
at which point it resets.

 Bootstrapping interval: The graph implicitly shows the
effect of the bootstrapping interval. The steeper the upward
slope, the faster the noise accumulates and the more

frequently bootstrapping needs to be performed to maintain
the noise level below the threshold.

Comparing Figures 7 and 8 highlights the effectiveness of
bootstrapping. While noise grows exponentially without
bootstrapping, bootstrapping can maintain it at a quasi-stable
level.

Fig. 7. Cumulative noise growth without bootstrapping per file type.

Fig. 8. Smoothed noise level vs. file size with bootstrapping enabled to control noise growth.

V. CONCLUSION AND FUTURE WORK

Adaptive User-guided Resilient Approach using Cheon-
Kim-Kim-Song (AURA-CKKS) enables Homomorphic
Encryption (HE) of diverse data types, including text, images,
and audio, via a secure, structured pipeline. This pipeline offers
user-defined configurations, vectorization, CKKS-based
encoding, encryption, homomorphic processing, and
decryption. The main advantage of AURA-CKKS is its
adaptive noise management, which maintains result fidelity
during intricate calculations by fusing bootstrapping tests with
noise-reduction strategies. According to the test results,
AURA-CKKS outperforms standard CKKS, achieving up to

46% increased bootstrapping efficiency, over 51% faster
processing, and approximately 39% lower memory usage.
These improvements demonstrate its scalability and
dependability for encrypted applications that are sensitive to
noise.

Future development will add Multi-Party Computation
(MPC) to AURA-CKKS to enable safe, cooperative
processing, which is perfect for federated learning, privacy-
preserving analytics, and sensitive industries such as healthcare
and finance. Additionally, the framework will be adapted for
real-time and streaming data (such as time series, sensor feeds,
and video) to enable low latency encrypted processing in

Engineering, Technology & Applied Science Research Vol. 15, No. 4, 2025, 25984-25992 25992

www.etasr.com Yasmin & Devi: An Adaptive User-Guided Resilient Approach for Dynamic Bootstrapping in …

Internet of Things (IoT), edge computing, and multimedia
systems.

Although AURA-CKKS demonstrates significant
improvements in processor speed, memory utilization, and
bootstrapping efficiency, still has some drawbacks. For
example, the performance in high-complexity jobs may be
impacted if managing low noise thresholds for large files
results in an increased bootstrapping frequency. Furthermore,
widespread adoption in real-world systems may be hampered
by the technical complexity of user-guided controls and
dynamic bootstrapping. Finally, even though text, photos, and
music are included in the current experimental scope, more
study is required to assess performance with additional types of
data, such as video, structured databases, and real-time streams.
A major focus of our future research will be addressing these
limitations by investigating optimization techniques that
balance performance and noise thresholds, streamlining
implementation for wider adoption, and extending the
framework's functionality across various application domains.

REFERENCES

[1] J. H. Cheon, A. Kim, M. Kim, and Y. Song, "Homomorphic Encryption

for Arithmetic of Approximate Numbers," in Advances in Cryptology –

ASIACRYPT 2017: 23rd International Conference on the Theory and

Applications of Cryptology and Information Security, Hong Kong,
China, 2017, pp. 409–437, https://doi.org/10.1007/978-3-319-70694-

8_15.

[2] J.-P. Bossuat, C. Mouchet, J. Troncoso-Pastoriza, and J.-P. Hubaux,
"Efficient Bootstrapping for Approximate Homomorphic Encryption

with Non-sparse Keys," in Advances in Cryptology – EUROCRYPT

2021: 40th Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Zagreb, Croatia, 2021, pp.
587–617, https://doi.org/10.1007/978-3-030-77870-5_21.

[3] P. N. Duong and H. Lee, "Pipelined Key Switching Accelerator

Architecture for CKKS-Based Fully Homomorphic Encryption,"
Sensors, vol. 23, no. 10, May 2023, Art. no. 4594,

https://doi.org/10.3390/s23104594.

[4] Y. Bae, J. H. Cheon, W. Cho, J. Kim, and T. Kim, "META-BTS:
Bootstrapping Precision Beyond the Limit," in Proceedings of the 2022

ACM SIGSAC Conference on Computer and Communications Security,
New York, NY, USA, 2022, pp. 223–234,

https://doi.org/10.1145/3548606.3560696.

[5] Y. Bae, J. H. Cheon, J. Kim, and D. Stehlé, "Bootstrapping Bits with
CKKS," in Advances in Cryptology – EUROCRYPT 2024: 43rd Annual

International Conference on the Theory and Applications of

Cryptographic Techniques, Part II, Zurich, Switzerland, 2024, pp. 94–

123, https://doi.org/10.1007/978-3-031-58723-8_4.

[6] J.-W. Lee, E. Lee, Y. Lee, Y.-S. Kim, and J.-S. No, "High-Precision
Bootstrapping of RNS-CKKS Homomorphic Encryption Using Optimal

Minimax Polynomial Approximation and Inverse Sine Function," in
Advances in Cryptology – EUROCRYPT 2021: 40th Annual

International Conference on the Theory and Applications of

Cryptographic Techniques, Part I, Zagreb, Croatia, 2021, pp. 618–647,

https://doi.org/10.1007/978-3-030-77870-5_22.

[7] K. Han and D. Ki, "Better Bootstrapping for Approximate

Homomorphic Encryption," in Topics in Cryptology – CT-RSA 2020:

The Cryptographers’ Track at the RSA Conference 2020, San Francisco,

CA, USA, 2020, pp. 364–390, https://doi.org/10.1007/978-3-030-40186-
3_16.

[8] A. A. Badawi and Y. Polyakov, "Demystifying Bootstrapping in Fully

Homomorphic Encryption." Cryptology ePrint Archive, 2023. [Online].
Available: https://eprint.iacr.org/2023/149.

[9] C. Gentry, "A fully homomorphic encryption scheme," Ph.D.

dissertation, Stanford University, Stanford, CA, USA, 2009.

[10] G. K. Mahato and S. K. Chakraborty, "A Comparative Review on
Homomorphic Encryption for Cloud Security," IETE Journal of

Research, vol. 69, no. 8, pp. 5124–5133, Sep. 2023,
https://doi.org/10.1080/03772063.2021.1965918.

[11] V. Kadykov, A. Levina, and A. Voznesensky, "Homomorphic

Encryption within Lattice-Based Encryption System," Procedia

Computer Science, vol. 186, pp. 309–315, Jan. 2021,

https://doi.org/10.1016/j.procs.2021.04.149.

[12] D. B. Salvakkam and R. Pamula, "Design of fully homomorphic
multikey encryption scheme for secured cloud access and storage

environment," Journal of Intelligent Information Systems, vol. 62, no. 3,
pp. 641–663, Jun. 2024, https://doi.org/10.1007/s10844-022-00715-7.

[13] H. Patel, "Fully Homomorphic Encryption: Revolutionizing Payment
Security," International Journal of Scientific Research in Computer

Science, Engineering and Information Technology, vol. 11, no. 2, pp.
2379–2396, Mar. 2025, https://doi.org/10.32628/CSEIT25112706.

[14] H. Huang and H. Zong, "Secure matrix multiplication based on fully

homomorphic encryption," The Journal of Supercomputing, vol. 79, no.
5, pp. 5064–5085, Mar. 2023, https://doi.org/10.1007/s11227-022-

04850-4.

[15] L. Sadeghikhorami and A. A. Safavi, "Secure distributed Kalman filter
using partially homomorphic encryption," Journal of the Franklin

Institute, vol. 358, no. 5, pp. 2801–2825, Mar. 2021,
https://doi.org/10.1016/j.jfranklin.2020.08.048.

[16] S. Medileh et al., "A Multi-Key with Partially Homomorphic Encryption

Scheme for Low-End Devices Ensuring Data Integrity," Information,
vol. 14, no. 5, May 2023, Art. no. 263,

https://doi.org/10.3390/info14050263.

[17] Y. Fang et al., "Enhancing paillier to fully homomorphic encryption
with semi-honest TEE," Peer-to-Peer Networking and Applications, vol.

17, no. 5, pp. 3476–3488, Sep. 2024, https://doi.org/10.1007/s12083-
024-01752-5.

[18] K. Rajeshkumar, C. Ananth, and N. Mohananthini, "Blockchain-

Assisted Homomorphic Encryption Approach for Skin Lesion Diagnosis
using Optimal Deep Learning Model," Engineering, Technology &

Applied Science Research, vol. 13, no. 3, pp. 10978–10983, Jun. 2023,
https://doi.org/10.48084/etasr.5594.

[19] M. Wu, X. Zhao, and W. Song, "Bootstrapping Optimization Techniques
for the FINAL Fully Homomorphic Encryption Scheme," Information,

vol. 16, no. 3, Mar. 2025, Art. no. 200,
https://doi.org/10.3390/info16030200.

[20] A. El-Yahyaoui and M. D. Ech-Cherif El Kettani, "A Verifiable Fully

Homomorphic Encryption Scheme for Cloud Computing Security,"
Technologies, vol. 7, no. 1, Mar. 2019, Art. no. 21,

https://doi.org/10.3390/technologies7010021.

[21] "Project Gutenberg: Free eBooks." Project Gutenberg.
https://www.gutenberg.org/.

[22] J. Fan and F. Vercauteren, "Somewhat Practical Fully Homomorphic

Encryption." 2012. [Online]. Available: https://eprint.iacr.org/2012/144.

[23] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, "(Leveled) fully
homomorphic encryption without bootstrapping," in Proceedings of the

3rd Innovations in Theoretical Computer Science Conference, New
York, NY, USA, 2012, pp. 309–325,

https://doi.org/10.1145/2090236.2090262.

