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ABSTRACT 

This study presents an effective speed limit sign detection and automatic speed regulation system using 

YOLOv11 within an Advanced Driver Assistance System (ADAS) framework. By integrating rapid sign 

detection with vector control of Permanent Magnet Synchronous Motors (PMSM), the proposed system 

delivers real-time speed limit compliance and improved vehicle performance. The YOLOv11 model was 

trained on a dataset of 23,000 traffic sign images. Experimental results demonstrate high performance, 

with a mean Average Precision (mAP) of 99.6% (mAP@50) and 86.2% (mAP@50–95), alongside 99.2% 

precision and 98.5% recall, underscoring the model's effectiveness. This work concludes that combining 

deep learning–based traffic sign recognition with advanced motor control significantly enhances ADAS 

capabilities and paves the way for future research into integrated, high-accuracy solutions for sustainable 

transportation. 

Keywords-YOLOv11; speed limit sign detection; Advanced Driver Assistance Systems (ADAS); electric 

vehicles; speed regulation; deep learning 
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I. INTRODUCTION  

Ensuring road safety and reducing traffic accidents remain 
central objectives in the development of autonomous driving 
technologies and Advanced Driver Assistance Systems 
(ADAS) [1]. Among various factors contributing to safe 
transportation, speed limit signs are crucial, as they regulate 
traffic flow, enforce legal speed constraints, and promote 
responsible driving. Over the past decade, significant 
advancements in computer vision and deep learning have 
revolutionized traffic sign detection systems [2]. Despite such 
progress, several challenges persist. Traditional detection 
methods often fail under realistic scenarios, particularly when 
speed limit signs are partially obscured, damaged, or dirty. 
Additional complications arise from varying lighting, adverse 
weather, and the diversity of traffic sign designs across 
countries, all of which hinder consistent and accurate detection 
[3]. For Electric Vehicles (EVs), accurate speed limit detection 
holds special significance due to their reliance on Permanent 
Magnet Synchronous Motors (PMSMs), chosen for their high-
power density and rapid dynamic response. Utilizing detected 
speed limits to dynamically adjust PMSM parameters allows 
effective management of torque and energy consumption, 
thereby optimizing vehicle performance and efficiency. 
Consequently, precise detection directly contributes to 
improved vehicle control, energy management, regulatory 
compliance, and enhanced sustainability in transportation [3, 
4]. 

Deep learning has substantially improved object detection 
methods, especially in traffic sign recognition. Two-Stage 
detectors, including Region-based Convolutional Neural 
Networks (R-CNN), Spatial Pyramid Pooling (SPP)-Net, fast 
R-CNN, faster R-CNN, and mask R-CNN, achieve high 
accuracy but are computationally intensive, making them 
unsuitable for real-time applications in embedded vehicle 
systems [5]. In contrast, one-stage detectors like Single Shot 
Detector (SSD) and You Only Look Once (YOLO) unify 
region proposal and classification into a single pipeline, 
enabling faster inference and lower computational load, key 
advantages for onboard ADAS deployment [6]. Nonetheless, 
detecting small, partially occluded speed limit signs remains 
challenging. Previous YOLO versions, like YOLOv8, have 
reported strong results (mAP@50 of 99.1% and mAP@50:95 
of 83.5%) [7]. YOLOv11 represents a significant advancement, 
offering enhanced computational efficiency and real-time 
capability, both critical for in-vehicle systems [8]. It 
incorporates architectural innovations, including the C3k2 
block, SPPF, and Cross-Scale Pixel Spatial Attention (C2PSA) 
modules, which improve detection precision, recall, and 
inference speed [9]. Comparative analyses affirm YOLOv11's 
superiority in detecting small objects swiftly and accurately, 
even in complex real-world scenarios, making it well-suited for 
ADAS applications with limited processing resources. 

In parallel, advanced PMSM control strategies, including 
vector control, Sliding Mode Control (SMC), Direct Torque 
Control (DTC), and Flux Weakening Control (FWC), facilitate 
precise real-time torque and speed management [10-12]. By 
integrating YOLOv11-based detection with PMSM control, 

vehicles can dynamically adapt to posted speed limits while 
optimizing energy consumption. 

In this study, we propose an integrated approach that 
combines precise speed limit sign detection using YOLOv11 
with vector control of PMSM to enhance both road safety and 
EV efficiency [13]. This integration enables high detection 
accuracy, real-time responsiveness, reduced computational 
overhead, and significant improvements in vehicle safety, 
energy efficiency, and regulatory compliance. 

II. METHODOLOGY 

A. YOLOv11 Model for Speed Limit Sign Detection 

YOLOv11 marks a significant advancement within the 
Ultralytics YOLO series, achieving an optimal balance 
between detection accuracy, inference speed, and 
computational efficiency, features that make it particularly 
well-suited for real-time ADAS applications. As the latest 
evolution in the YOLO family, YOLOv11 introduces key 
architectural innovations designed to enhance feature 
representation while enabling efficient deployment on 
embedded automotive platforms [8, 14]. Structurally, 
YOLOv11 replaces the earlier C2f module with the C3k2 
module, utilizing a multibranch architecture combined with 
residual connections to improve multiscale feature extraction. 
This approach maintains a lightweight structure while 
significantly enhancing feature adaptability. Additionally, 
YOLOv11 integrates the Spatial Pyramid Pooling Fast (SPPF) 
module, which effectively aggregates multiscale contextual 
information through sequential MaxPooling operations, 
capturing rich local and global semantics without increasing 
computational overhead. Another significant enhancement is 
the C2PSA module, positioned after the SPPF block. This 
module leverages pixel-level spatial attention mechanisms to 
refine feature maps, focusing on critical regions and boosting 
detection performance in complex scenes with multiple objects 
or occlusions. 

 

 

Fig. 1.  Overall architecture of YOLOv11 network. 

As illustrated in Figure 1, the overall YOLOv11 
architecture comprises three main components: the Backbone, 
Neck, and Head. The Backbone employs convolutional layers, 
C3k2 blocks, and attention modules (SPPF, C2PSA) to extract 
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deep, multiscale features. The Neck module integrates these 
features across different resolutions through upsampling, 
concatenation, and additional C3k2 blocks, ensuring robust 
fusion and semantic preservation. Finally, the Head module 
performs precise bounding-box regression and object 
classification at multiple scales. Moreover, the adoption of 
depth-wise separable convolutions in the detection head 
significantly reduces computational redundancy, enhancing 
throughput and further optimizing real-time operation 

B. Performance Metrics 

To evaluate the performance of the speed limit sign 
detection algorithm under real-time operational constraints, 
four primary metrics were employed [15]: precision, recall, 
Average Precision (AP), mean Average Precision (mAP), and 
F1-score. Precision measures the proportion of correctly 
predicted positive instances out of all predicted positives, while 
recall quantifies the proportion of correctly predicted positives 
among all actual positives. AP is defined as the area under the 
precision-recall curve for a single class, and mAP is the 
average of AP scores across all classes, providing a 
comprehensive measure of overall detection performance. The 
F1-score measures the harmonic mean of precision and recall, 
making it a particularly effective metric for evaluating model 
performance on imbalanced datasets or when classifying 
minority classes. These metrics are formally defined as follows, 
where TP denotes true positives, FP false positives, and FN 
false negatives: 

Precision = 
�

��
� ∙ 100%   (1) 

Recall =  
�

��
�  ∙ 100%   (2) 

AP = �  ����d��
�     (3) 

mAP =  �
! ∑  �#��$%&'�     (4) 

F1 − score = 2 �+,-./.01∙2,-344
�+,-./.01�2,-344 ∙ 100%  (5) 

where 5 represents the total number of classes, and #�6  is the 

AP for the 789 class. 

C. Electric Vehicle (EV) Description 

An EV uses electric motors for propulsion, replacing 
traditional internal combustion engines.  Figure 2 illustrates the 
key components of the EV drivetrain, which are fundamental 
for understanding the propulsion system. Specifically, the 
drivetrain consists of: 1) a converter/inverter that transforms 
Direct Current (DC) energy from the battery into Alternating 
Current (AC) to drive the motor, 2) a PMSM that generates 
mechanical torque, 3) a mechanical transmission that adapts 
motor torque and speed to the wheels, and 4) the wheels 
themselves, which transmit the motion to the road surface [4, 
16]. 

The motor produces torque by converting electrical energy 
into mechanical energy, which propels the vehicle. The vehicle 
speed :  is related to the motor's rotational speed ;<  through 
(6): 

: = =;<     (6) 

where = is the transmission ratio. On dry road surfaces, where 
wheel slip is negligible, the relationship between vehicle speed 
: and wheel angular speed ; is given by: 

: = �;     (7) 

where � is the wheel radius. 

The voltage-fed PMSM can be modeled by the following 
dynamic equations in the d–q rotating reference frame: 

:> = �?> + A>
>BC
>8  − ;AD?D   (8) 

:D = �?D + AD
>BE
>8 + ;FA>?> + GHI  (9) 

>BC
>8 = JC

KC
− LBC

KC
+ MKEBE

KC
    (10) 

>BE
>8 = JE

KE
− LBE

KE
− MKCBC

KE
−  MNO

KE
   �11� 

>M
>8 = �

P �5Q − 5< − R;�   �12� 
5Q =  S

T � UFA> − ADI?>?D + GH?DV  �13� 
where :D  and  :>  represent the d-q axis voltages, while ?> and 

?D are the corresponding d-q axis currents. A> and AD denote the 

d-q axis inductances, and GH  is the permanent magnet flux 

linking the stator. X is the combined moment of inertia of the 
motor and load, 5Q  is the electromagnetic torque produced by 
the motor, and 5<  is the resistive load torque opposing motion. 
Additionally, R is the viscous friction coefficient accounting for 
mechanical losses, and �  is the number of pole pairs of the 
PMSM. 

 

 

Fig. 2.  EV drivetrain architecture: 1) converter/inverter, 2) PMSM motor, 

3) transmission (gearbox), 4) wheels. 

D. Speed Regulation of PMSM by Vector Control 

Initially, a PMSM model is formulated using a state-space 
approach that integrates the electrical, magnetic, and 
mechanical dynamics described by equations (10)-(13). A 
vector control strategy is then applied to achieve precise and 
efficient motor speed regulation. This approach utilizes a 
Proportional-Integral (PI) controller, electromechanical 
decoupling, state feedback, and specific reference equations for 

torque 5Q∗
, current ?D<QH , and voltages :D<QH  and :><QH . The 

system inputs include the measured motor speed :Z  and a 
reference speed : , derived from external sources such as 
detected speed limit signs. The outputs are direct and 
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quadrature axis voltages :>  and :D , defined in (8) and (9), 

respectively. The central Control Block compares the measured 
motor speed :Z  with the reference speed : , generating 

appropriate voltage references (:><QH , :D<QH) in real-time. This 

enables optimal control of motor speed and torque while 
maintaining system stability, safety, and efficiency. Through 
the PI controller and closed-loop feedback, the system 
dynamically corrects deviations between actual and desired 
motor behavior 

As depicted in Figure 3, the control architecture 
incorporates the inverse Park transformation to convert the 

reference voltages (:><QH , :D<QH) into three-phase voltages :[ , 

:\ , :% . These voltages pass through an inverter using a 
transition matrix ] . The resulting three-phase voltages and 
currents are then transformed back into the d–q reference frame 

using the Park transformation, yielding the actual axis voltages 
:> , :D . This decoupling mechanism allows for independent 

control of flux and torque, thereby enhancing dynamic 
performance. The control system is governed by the following 
reference equations: 

?D<QH = 5Q ∗ ^ T
S_NO∗ `    (14) 

:><QH  = −;∗AD?D<QH     (15) 

:D<QH = �?D<QH + ;GH∗   (16) 

where ?D<QH is the reference quadrature-axis current, 5Q ∗
 is the 

reference electromagnetic torque, ;∗  is the reference angular 
speed, and GH∗ denotes the reference permanent magnet flux. 

 

 
Fig. 3.  Vector control architecture for speed regulation. 

E. Case Study of Proposed Method 

The speed limit sign perception system developed in this 
study incorporates a high-resolution camera mounted behind 
the vehicle’s interior rearview mirror. This strategic placement 
enables continuous, real-time image acquisition, significantly 
enhancing the system’s ability to detect various traffic signs 
under diverse environmental conditions. 

To train the detection model, a custom dataset of 23,000 
manually labeled images was constructed, comprising 10 speed 
limit classes ranging from 20 to 120 km/h, covering commonly 
observed regulatory signs. Table I summarizes the image 
distribution across the speed limit classes used in the training 
process. Each image was annotated using Roboflow and 
exported in YOLO format to ensure compatibility with the 
training pipeline. All images were resized to 640 × 640 pixels 
to strike a balance between visual clarity and computational 
efficiency. To enhance model robustness and mitigate 

overfitting, various data augmentation techniques were applied, 
including flipping, rotation, noise addition, and exposure 
adjustments. The dataset was divided into 70% for training, 
20% for validation, and 10% for testing, as shown in Figure 4. 

TABLE I.  DISTRIBUTION OF IMAGES PER SPEED LIMIT 
CLASS IN THE CONSTRUCTED DATASET 

Speed Limit (km/h) Number of Images 

20 1256 

30 3120 

40 3253 

50 1437 

60 3015 

70 3065 

80 1425 

90 1563 

100 2710 

120 2156 
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Fig. 4.  Dataset preparation workflow. 

To assess generalization performance, complex urban 
environments were selected from cities such as Casablanca, 
Kenitra, Tangier, Ksar Sghir, Meknes, and Khemisset. These 
scenarios introduced challenges like partially obscured and 
weather-damaged signs, closely simulating real-world driving 
conditions. Figure 5 presents examples of these challenging 
environments, enabling rigorous evaluation of the model’s 
detection capabilities. The speed control system was simulated 
using a numerical approach, with the PMSM directly powered 
by a 220/380 V supply on a balanced three-phase grid 
operating at a fixed frequency of 50 Hz. The simulation was 
implemented in MATLAB/Simulink, with machine parameters 
detailed in Table II. This setup enabled precise modeling of the 
PMSM’s dynamic response, allowing comprehensive testing of 
the speed control algorithm under a wide range of operating 
conditions. 

 

 
Fig. 5.  Complex urban scenarios in Morocco used for the evaluation of 

speed limit sign detection. 

Model training was conducted on a high-performance local 
machine equipped with an AMD Ryzen 9 7940HX CPU, 
NVIDIA RTX 4070 GPU with 8 GB VRAM, and 32 GB of 

DDR5 RAM, running Windows 11. The training environment 
included Python 3.12.4, PyTorch 2.5.1, and CUDA 11.8. The 
model was trained over 300 epochs with a batch size of 16 
using the Stochastic Gradient Descent (SGD) optimizer, 
configured with a learning rate of 0.01, momentum of 0.937, 
and weight decay of 0.0005, as summarized in Table II. 

TABLE II.  MACHINE PARAMETERS 

Parameters Values 

Stator resistance R R = 2.875 Ω 

Direct axis inductance Ld Ld = 7.5 mH 

Quadrature axis inductance Lq Lq = 2.5 mH 

Moment of inertia J J = 0.0008 kg.m2 

Coefficient of friction f f = 0.0001 N.m. s 

Number of magnetic poles P P = 8 

TABLE III.  HARDWARE AND SOFTWARE 
CONFIGURATIONS WITH HYPERPARAMETER SETTINGS 

Hardware and software Environment Hyperparameters 

Name Version Parameters Details 

CPU 
AMD Ryzen 

97940HX 
Epochs 300 

GPU 
NVIDIA GeForce 

RTX4070 
Batch size 16 

VRAM 8 GB Image size 640x640 

Memory 32 GB DDR5 Optimizer algorithm SGD 

Operating System Windows 11 Momentum 0.937 

Python Version 3.12.4 Weight Decay 0.0005 

PyTorch Version 2.5.1 Initial Learning Rate 0.01 

CUDA Version 11.8 Final Learning Rate 0.01 
 

III. RESULTS 

A. YOLOv11 Traffic Sign Limit Detection 

The YOLOv11 model demonstrated exceptional 
performance during both training and validation phases, 
achieving highly accurate speed limit sign detection. As shown 
in Figure 6, the convergence of training and validation losses 
indicates effective learning and training stability. The model 
achieved a mAP@50 of 99.6%, reflecting excellent localization 
accuracy, and a mAP@50-95 of 86.2%, indicating robustness 
across a range of Intersection over Union (IoU) thresholds. In 
addition, the model attained a precision of 99.2% and a recall 
of 98.5%, confirming its ability to minimize false positives 
while reliably identifying relevant speed limit signs in real-
world scenarios. Analysis of the Precision–Confidence curves 
(Figure 7) shows that precision peaked globally at 1.00 at a 
confidence threshold of approximately 0.911. Precision 
remained above 90% across most classes at moderate 
confidence levels, with particularly strong detection 
performance for 50 km/h, 70 km/h, and 90 km/h signs. The 
Recall–Confidence curves (Figure 8) further illustrate 
YOLOv11’s consistent performance, with recall values near 
1.0 up to a confidence threshold of approximately 0.8. Beyond 
this point, recall gradually declines due to stricter filtering, an 
expected trade-off in high-precision systems. The F1–
Confidence curves (Figure 9) highlight YOLOv11’s balanced 
performance, with a global F1-score peaking at 0.99 around a 
confidence threshold of 0.606. The F1-score remains high 
across a wide range of thresholds, declining only beyond 0.8, 
reflecting strong overall detection stability. 
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Fig. 6.  YOLOv11 training metrics:  training losses, validation losses, 

performance metrics. 

The normalized confusion matrix shown in Figure 10 
provides a detailed view of classification accuracy across speed 
limit classes. The matrix displays a heavily populated diagonal, 
indicating high rates of correct classification. Most classes, 
including 90 km/h, 100 km/h, and 120 km/h, achieved near-
perfect accuracy. Minor misclassifications were observed 
primarily in the background class, typically due to partially 
obscured or visually ambiguous signs. 

Real-world robustness was further validated in Figure 11, 
where YOLOv11 effectively detected speed limit signs (30 
km/h, 40 km/h, and 60 km/h) despite partial occlusions from 
tree branches and challenging lighting. This confirms the 
model’s resilience and effectiveness in varied environments, 
reinforcing its suitability for ADAS and speed regulation in 
EVs. Table III presents a comparative analysis of YOLOv11 
performance with results from previous YOLO versions in the 
literature for speed limit sign detection. While YOLOv9 
achieved a mAP@50 of 98.8% and a mAP@50:95 of 75%, 

YOLOv11 outperformed it with values of 99.6% and 86.2%, 
respectively. These improvements stem from architectural 
refinements, enhanced feature extraction, a more optimized 
detection pipeline, and the elimination of Non-Maximum 
Suppression (NMS), which collectively contribute to increased 
detection accuracy and reliability. 

 

 

Fig. 7.  Precision-confidence curves for each detected speed limit class. 

 

Fig. 8.  Recall-confidence performance across speed limit classes. 

 

Fig. 9.  F1-confidence analysis for YOLOv11 model. 
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Fig. 10.  Normalized confusion matrix for YOLOv11. 

 
Fig. 11.  Detection of speed limit signs at different speed levels. 

 

TABLE IV.  COMPARISON OF MODELS 

Method 
Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 
mAP@50 mAP50@95 

YOLOv4 [17] 74 81 77 74.6% - 

YOLOv5 [18] 85 82.8 83.9 87.8% 67.2% 

YOLOv7 [19] 91.46 83 87 91.4% - 

YOLOv8 [20] 96.1 94.7 95.4 95.3% - 

YOLOv9 [21] 81.29 88.2 89.8 98.8% 75% 

YOLOv11 99.2 98.5 98.9 99.6% 86.2% 

 

B. Speed Regulation 

Figure 12 presents a simulation of the proposed speed 
regulation system, which integrates PMSM control with real-
time traffic sign detection.  

In the first simulation scenario in Figure 12(a), the initial 
motor speed was set to :Z=77  km/h, while the detected speed 
limit was 60 km/h. The objective here was to verify the 
system’s capability to significantly decelerate the vehicle to 
match the required speed limit. Results confirmed that the 
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speed regulation effectively reduced the motor speed to closely 
match the imposed speed limit, demonstrating the system’s 
compliance capability. In the second scenario in Figure 12(b), 
the motor initially operated at :Z = 65  km/h, with a new 
detected speed limit of 40  km/h. The system quickly adapted, 
demonstrating rapid convergence of motor speed to the 
required limit, thus validating its responsiveness and robustness 
to frequent speed variations. For the third scenario in Figure 
12(c), the motor started at :Z = 50  km/h, and the observed 
speed limit was 30  km/h. The results show proportional and 
accurate speed reduction, maintaining compliance even when 
the new speed limit is substantially lower than the initial speed. 

 

 

 

 

Fig. 12.  Vehicle speed regulation under different speed limit scenarios: 

(a) 60 km/h, (b) 40 km/h, and (c) 30 km/h. 

In addition to the proposed vector control strategy for the 
PMSM system, several alternatives have been explored in the 
literature. Fuzzy PID controllers [22] offer enhanced robustness 
and accuracy compared to conventional PID techniques. SMC, 
when optimized using Harris Hawks Optimization [23], 
achieves improved dynamic performance and resilience under 
varying operational conditions. Furthermore, Fuzzy Logic 

Controllers (FLCs) [24] demonstrate superior torque stability 
and energy efficiency. Despite these advancements, vector 
control remains the most appropriate choice for ADAS 
applications, offering an optimal trade-off between control 
precision, computational complexity, and real-time 
implementation feasibility. 

IV. CONCLUSION 

This study presents a deep learning-based system that 
integrates YOLOv11 for real-time speed limit sign detection 
with Permanent Magnet Synchronous Motors (PMSM) vector 
control for automated vehicle speed adaptation in Electric 
Vehicles (EVs). The YOLOv11 model, enhanced with C3k2, 
Spatial Pyramid Pooling Fast (SPPF), and Cross-Scale Pixel 
Spatial Attention (C2PSA) modules, achieved outstanding 
detection accuracy, with a mean Average Precision (mAP) of 
99.6% (mAP@50) and 86.2% (mAP@50–95), 99% precision, 
and 98.3% recall, outperforming previous versions of You 
Only Look Once (YOLO). 

In terms of control, the PMSM speed regulation system 
showed rapid and precise responses under varying speed limit 
scenarios. While alternative control strategies such as Fuzzy 
PID, Sliding Mode Control (SMC), and Fuzzy Logic 
Controllers (FLCs) have demonstrated good accuracy, stability, 
and efficiency, they often involve increased computational 
complexity or require extensive tuning. In contrast, vector 
control offers a superior trade-off between implementation 
simplicity, real-time adaptability, and reliable performance. 

By unifying high-performance traffic sign detection with 
intelligent motor control, this work significantly advances 
Advanced Driver Assistance Systems (ADAS) capabilities in 
EVs. The proposed system enhances road safety and promotes 
energy-efficient driving through real-time enforcement of 
speed limits. 

REFERENCES 

[1] S. Waykole, N. Shiwakoti, and P. Stasinopoulos, "Review on Lane 
Detection and Tracking Algorithms of Advanced Driver Assistance 
System," Sustainability, vol. 13, no. 20, Oct. 2021, Art. no. 11417, 
https://doi.org/10.3390/su132011417. 

[2] A. A. Mehta et al., "Securing the Future: A Comprehensive Review of 

Security Challenges and Solutions in Advanced Driver Assistance 
Systems," IEEE Access, vol. 12, pp. 643–678, 2024, 
https://doi.org/10.1109/ACCESS.2023.3347200. 

[3] Y. Li, A. Mogelmose, and M. M. Trivedi, "Pushing the ‘Speed Limit’: 
High-Accuracy US Traffic Sign Recognition With Convolutional Neural 
Networks," IEEE Transactions on Intelligent Vehicles, vol. 1, no. 2, pp. 
167–176, Jun. 2016, https://doi.org/10.1109/TIV.2016.2615523. 

[4] Q. Zhao, Z. Zhao, Z. Yang, and W. Liu, "Speed control of sensorless 
PMSM drive based on EKF optimized by variable scale chaotic particle 
swarm optimization," Measurement and Control, vol. 57, no. 7, pp. 981–
991, Jul. 2024, https://doi.org/10.1177/00202940231224220. 

[5] F. Sultana, A. Sufian, and P. Dutta, "A Review of Object Detection 
Models Based on Convolutional Neural Network," in Intelligent 
Computing: Image Processing Based Applications, vol. 1157, J. K. 
Mandal and S. Banerjee, Eds. Singapore: Springer Singapore, 2020, pp. 
1–16. 

[6] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look 
Once: Unified, Real-Time Object Detection," in 2016 IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 
USA, Jun. 2016, pp. 779–788, https://doi.org/10.1109/CVPR.2016.91. 



Engineering, Technology & Applied Science Research Vol. 15, No. 4, 2025, 25354-25362 25362  
 

www.etasr.com Chaman et al.: Deep Learning-Based Speed Limit Sign Detection Using YOLOv11 Applied to Speed … 

 

[7] D. Reis, J. Kupec, J. Hong, and A. Daoudi, "Real-Time Flying Object 
Detection with YOLOv8," May 2024, 
https://doi.org/10.48550/arXiv.2305.09972. 

[8] M. Chaman, A. El Maliki, H. El Yanboiy, H. Dahou, H. Laâmari, and A. 
Hadjoudja, "Comparative Analysis of Deep Neural Networks YOLOv11 
and YOLOv12 for Real-Time Vehicle Detection in Autonomous 
Vehicles," International Journal of Transport Development and 
Integration, vol. 9, no. 1, pp. 39–48, Mar. 2025, 
https://doi.org/10.18280/ijtdi.090104. 

[9] Ultralytics, YOLO11, 2024. [Online]. Available: 
https://docs.ultralytics.com/models/yolo11 

[10] J. Zhao, X. Liu, S. Wang, and L. Zheng, "Review of Design and Control 
Optimization of Axial Flux PMSM in Renewable-energy Applications," 
Chinese Journal of Mechanical Engineering, vol. 36, no. 1, Apr. 2023, 
Art. no. 45, https://doi.org/10.1186/s10033-023-00868-8. 

[11] F. M. Zaihidee, S. Mekhilef, and M. Mubin, "Robust Speed Control of 
PMSM Using Sliding Mode Control (SMC)—A Review," Energies, vol. 
12, no. 9, May 2019, Art. no. 1669, https://doi.org/10.3390/en12091669. 

[12] K. Belda and D. Vosmik, "Explicit Generalized Predictive Control of 
Speed and Position of PMSM Drives," IEEE Transactions on Industrial 
Electronics, vol. 63, no. 6, pp. 3889–3896, Jun. 2016, 
https://doi.org/10.1109/TIE.2016.2515061. 

[13] E. Sangeetha and V. P. Ramachandran, "An enhanced proportional 
resonance controller design for the PMSM based electric vehicle drive 
system," Heliyon, vol. 10, no. 15, Aug. 2024, Art. no. e35244, 
https://doi.org/10.1016/j.heliyon.2024.e35244. 

[14] A. Awad and S. A. Aly, "Early Diagnosis of Acute Lymphoblastic 
Leukemia Using YOLOv8 and YOLOv11 Deep Learning Models." 
arXiv, 2024, https://doi.org/10.48550/ARXIV.2410.10701. 

[15] A. Tripathi, V. Gohokar, and R. Kute, "Comparative Analysis of 
YOLOv8 and YOLOv9 Models for Real-Time Plant Disease Detection 
in Hydroponics," Engineering, Technology & Applied Science Research, 
vol. 14, no. 5, pp. 17269–17275, Oct. 2024, 
https://doi.org/10.48084/etasr.8301. 

[16] T.-L. Le, "A Robust Control Strategy for Effective Field-Oriented 
Control of PMSMs," Engineering, Technology & Applied Science 
Research, vol. 14, no. 6, pp. 18469–18475, Dec. 2024, 
https://doi.org/10.48084/etasr.8893. 

[17] A. Mulyanto, R. I. Borman, P. Prasetyawan, W. Jatmiko, P. Mursanto, 
and A. Sinaga, "Indonesian Traffic Sign Recognition For Advanced 
Driver Assistent (ADAS) Using YOLOv4," in 2020 3rd International 
Seminar on Research of Information Technology and Intelligent Systems 
(ISRITI), Yogyakarta, Indonesia, Dec. 2020, pp. 520–524, 
https://doi.org/10.1109/ISRITI51436.2020.9315368. 

[18] L. Jiang, H. Liu, H. Zhu, and G. Zhang, "Improved YOLO v5 with 
balanced feature pyramid and attention module for traffic sign 
detection," MATEC Web of Conferences, vol. 355, 2022, Art. no. 03023, 
https://doi.org/10.1051/matecconf/202235503023. 

[19] J. P. Q. Tomas, J. C. S. Diamante, M. M. T. Cortez, and G. A. I. 
Domingo, "Detection of Water Hyacinth (Eichhornia crassipes) on the 
Water Surface of Pasig River, Philippines, through YOLOv7," in 
Proceedings of the 2023 6th International Conference on Computational 
Intelligence and Intelligent Systems, Tokyo Japan, Nov. 2023, pp. 124–
129, https://doi.org/10.1145/3638209.3638228. 

[20] B. Dang Hai, H. D. Nguyen, T. N. Vo, P.-N. Tran, C. T. Nguyen, and D. 
N. M. Dang, "Performance Comparison in Traffic Sign Recognition 
Using Deep Learning," in Industrial Networks and Intelligent Systems, 
Da Nang, Vietnam, Feb. 2024, vol. 595, pp. 122–138, 
https://doi.org/10.1007/978-3-031-67357-3_9. 

[21] S. Fang, C. Chen, Z. Li, M. Zhou, and R. Wei, "YOLO-ADual: A 
Lightweight Traffic Sign Detection Model for a Mobile Driving 
System," World Electric Vehicle Journal, vol. 15, no. 7, Jul. 2024, Art. 
no. 323, https://doi.org/10.3390/wevj15070323. 

[22] F. Jin, H. Wan, Z. Huang, and M. Gu, "PMSM Vector Control Based on 
Fuzzy PID Controller," Journal of Physics: Conference Series, vol. 
1617, no. 1, Aug. 2020, Art. no. 012016, https://doi.org/10.1088/1742-
6596/1617/1/012016. 

[23] K. Mathew K, D. M. Abraham, and A. Harish, "Speed regulation of 
PMSM drive in electric vehicle applications with sliding mode controller 
based on harris Hawks optimization," e-Prime - Advances in Electrical 
Engineering, Electronics and Energy, vol. 9, Sep. 2024, Art. no. 100643, 
https://doi.org/10.1016/j.prime.2024.100643. 

[24] R. Shenbagalakshmi, S. K. Mittal, J. Subramaniyan, V. Vengatesan, D. 
Manikandan, and K. Ramaswamy, "Adaptive speed control of BLDC 
motors for enhanced electric vehicle performance using fuzzy logic," 
Scientific Reports, vol. 15, no. 1, Art. no. 12579, Apr. 2025, 
https://doi.org/10.1038/s41598-025-90957-6. 


