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ABSTRACT 

Early detection of incipient bearing faults in induction motors has proven crucial in predictive 

maintenance, helping avoid machine downtime and costly repairs. The main challenge is collecting 

sufficient data for deep learning models since faults are a rare occurrence. This paper investigates the 

efficacy of a transfer learning approach for induction motor bearing fault diagnosis using simulated 

vibration data. Healthy and faulty bearings of different severities were simulated in MATLAB for various 

noise magnitudes. A Squeeze and Excitation Residual Network (SE-ResNet), previously trained on a large 

dataset for bearing faults of a Permanent Magnet Synchronous Motor (PMSM), is used as a feature 

extractor. By leveraging pre-trained knowledge, the model's weights were fine-tuned using Bayesian 

Optimization, aiming to mitigate the data scarcity issue while maintaining accurate fault classification. The 

model's performance was compared against three hybrid architectures incorporating Long Short-Term 

Memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional LSTM (BiLSTM) layers. The study 

aims to assess the impact of adding recurrent layers to capture temporal dependencies within simulated 

vibration signals. Contrary to expectations, the hybrid models did not improve the classification accuracy 

compared to the standalone pre-trained SE-ResNet. The test accuracy remained the same for all the 

models at 97.297% whereas the computational cost increased for the hybrid models. This paper analyzes 

these findings, highlighting the challenges of transfer learning with simulated data. 

Keywords-Bayesian optimization; bearing fault detection; hybrid architectures; modeling and simulation; 

squeeze and excitation residual network; transfer learning 
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I. INTRODUCTION  

Induction motors play a pivotal role in industrial 
applications, making their operational reliability critical. 
Bearings, which support the rotational movement of the motor, 
are often susceptible to wear and faults over time [1, 2]. When 
left undetected, bearing faults can propagate and cause severe 
damage to machinery, resulting in system breakdowns and 
costly correctional maintenance. Therefore, early fault 
detection strategies aim at maximizing motor lifespan and 
preventing major disruptions in industrial processes. 
Traditional bearing fault detection often relies on preventive 
maintenance and manual analysis, which can be insufficient in 
identifying early-stage failures. The development of advanced 
machine learning techniques has opened new avenues for 
improving fault diagnosis [3, 4]. However, it calls for feature 
engineering [5] which can be time-consuming and requires 
domain expertise. Deep learning, which automatically learns 
complex features from raw data, has emerged as a promising 
solution for bearing fault detection [6].  

Various methodologies have been proposed to enhance 
detection accuracy including the use of vibration analysis [7], 
which when combined with modern deep learning techniques, 
provides a comprehensive approach to bearing health 
assessment [8]. For instance, in [9], the vibration signals 
collected from sensors were passed through variational mode 
decomposition and the utilized one-dimensional (1-D) 
Convolutional Neural Network (CNN) was able to diagnose 
bearing faults with an accuracy of 92.22%. A CNN model 
using a two-dimensional (2-D) form of vibration signal instead 
of 1-D was proposed in [10], achieving an accuracy of 97.74%. 
Authors in [11] presented a hybrid model combining CNN and 
Gated Recurrent Units (GRUs), integrated with envelope 
analysis and adaptive mean filtering techniques. These 
techniques suppressed noise achieving an accuracy of 99.25% 
when validated using an open-source dataset. 

Despite these advancements, one of the primary challenges 
in applying deep learning to bearing fault detection is the 
scarcity of labelled data [6]. Faults are often rare events, 
making the collection of sufficient training data difficult [12]. 
Datasets can be generated from experimental set-ups but 
creating a dataset that encompasses various fault severities, 
environmental conditions, and noise magnitudes is usually 
time-consuming and resource-intensive. Emphasis is therefore 
put on the importance of open-source datasets, which provide a 
foundation for experimentation and benchmarking since they 
offer a large amount of data. In [13], the Case Western Reserve 
University (CWRU) bearing database was used to validate the 
proposed multi-scale domain adaptive network achieving an 
accuracy greater than 99%. However, open-source datasets are 
typically created for specific research projects, which often 
have a narrow focus. For example, a dataset might be designed 
to study a particular type of bearing under controlled conditions 
in a specific machine of a certain power rating. This restricts 
the applicability of open-source datasets to broader scenarios. 

Recognizing the data-intensive nature of deep learning, 
researchers have explored transfer learning as a viable solution 
to address the scarcity of fault data. Transfer learning has 

gained significant attention in fault diagnosis by enabling 
models trained on one dataset, such as an open-source dataset, 
to generalize effectively to another dataset. This approach is 
particularly valuable when dealing with limited target domain 
data. This technique leverages pre-trained models on related 
tasks to mitigate the need for extensive labelled data in the 
target domain. The experimental results in [14] suggest that 
using mixed data as training samples to build neural network 
models can enhance the accuracy of transfer learning defect 
identification by over 10%, whereas in [15] the classification 
results show that using transfer learning reduces training time 
while enhancing diagnostic accuracy thus showcasing the 
viability of transfer learning. 

Various studies propose data augmentation [16] and 
simulation techniques to mitigate the data scarcity issue. A 
MATLAB-based tutorial for simulating rolling element bearing 
faults was provided in [17] highlighting the ability to generate 
synthetic fault signals for diagnostic purposes. Although 
simulating data is a promising alternative, its effectiveness in 
capturing real-world complexities remains a topic of 
investigation.  

This paper proposes simulating in MATLAB healthy and 
faulty induction motor bearings of varying severities and noise 
magnitudes that mimic real-world faults. The simulated bearing 
dataset is used to train a pre-trained Squeeze and Excitation 
Residual Network (SE-ResNet) previously developed by the 
authors of this paper in [12] using transfer learning strategies. 
The SE-ResNet model is enhanced with three different 
Recurrent Neural Network (RNN) variants to capture temporal 
dependencies in vibration signals. The performance of the SE-
ResNet and the three hybrid models is compared on both real-
world and simulated datasets, highlighting the challenges and 
potential of transfer learning. This approach demonstrates the 
potential of leveraging simulated data and transfer learning to 
overcome data scarcity challenges, achieving impressive test 
accuracy on the custom dataset. 

This research is essential since it presents a scalable and 
efficient approach to diagnosing bearing faults, which can be 
applied in environments where the provision of real-world data 
is limited. This solution offers industries a reliable predictive 
maintenance tool capable of detecting incipient faults and 
preventing catastrophic failures in induction motors. 

II. METHODOLOGY 

A. Mathematical Modeling of Induction Motor in MATLAB 
Simulink 

In this study, a 370 W, 415 V, 50 Hz, 2-pole, three-phase 
(3-ph) WEG induction motor with a bearing type 6203 was 
selected with the following parameters: �� = 22.6345 Ω , 
�′
 = 11.1965 Ω , �� = 13.5498 Ω , �′
 = 14.7358 Ω , 
�� = 462.9375 Ω ,  ������ = 0.84 A , ������ = 1.26 Nm , 
������ = 2825 rpm , and " = 0.0004 kgm
  [18]. The 
experiments were performed at a high sampling rate of 64 kHz.  

A detailed dynamic mathematical model of the induction 
motor was developed in Simulink [19]. The model incorporated 
the following components: stator circuit, rotor circuit, and 
mechanical subsystem. The stator circuit modelled the 
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electrical characteristics of the stator windings and included 
voltage equations and stator windings represented by 
resistances and inductances. The rotor circuit modelled the 
electrical and mechanical behaviour of the rotor and consisted 
of rotor windings represented by resistances, inductances, 
electromagnetic induction, and voltage and current equations. 
The mechanical subsystem included the rotor inertia, bearing 
dynamics, and load torque. The electromagnetic torque 
equation for the induction motor was given by:  

3
( )

2 2
e m qs dr ds qr

p
T L i i i i        (1) 

where p is the number of poles, mL is the mutual inductance 

between the stator and rotor windings, while , ds qsi i are the 

stator currents and , dr qri i are the rotor currents in the direct (d) 

and quadrature (q) axes. 

B. Simulation of Healthy and Faulty Bearings 

Bearing faults of varying severities were simulated using 
MATLAB to generate a diverse dataset. The simulation 
involved introducing artificial defects into the bearing model 
and generating corresponding vibration signals. The faults were 
modelled by utilizing the dynamic torque equations of the 
induction motor, and vibration was derived from the 
acceleration of the rotor’s motion. The torque equation 
governing the rotor’s dynamics is expressed as: 

( )
( ) ( )e load

d t
T t J T t

dt


     (2) 

where eT is the electromagnetic torque generated by the motor, 

J is the rotor’s moment of inertia, ω(t) is the angular velocity of 

the rotor, and loadT  is the load torque applied to the system.  

The acceleration ( )t  of the rotor, which was used as the 

vibration signal, was derived from the angular velocity: 

( ) ( )( )
( ) e loadT t T td t
t

dt J





     (3) 

The load torque for healthy bearings was taken as 
0loadT T . 

In the presence of bearing faults, the load torque was modified 
to reflect the impact of the fault. Different severities of the 
bearing faults were modelled by adjusting the amplitude of the 
fault-induced load torque oscillations, which introduced 
disturbances to the rotor’s motion [20, 21]: 

0( ) (1 cos( )load fault s faultT t T A k t      (4) 

where 0T  is the nominal load torque, 
faultA is the fault severity 

amplitude, /1000sk l  is the severity factor with l being the 

length of damage, and 2fault cf   is the angular fault 

velocity. The characteristic frequency cf  was for faults in the 

inner raceway, the outer raceway, or a combination of the 
aforementioned faults. This framework simulated both healthy 
and faulty bearings across various severity levels based on the 

length (l) of the damage, i.e. minor: l   2 mm, moderate: 2 

mm l  4.5 mm, and severe faults: l > 4.5 mm [22].  

The characteristic frequencies of rolling bearings were 
calculated by [20]: 

(1 cos )
2

b b
outer r

c

N D
f f

D
       (5) 

(1 cos )
2

b b
inner r

c

N D
f f

D
       (6) 

where bN is the number of bearing balls, cD is the bearing 

separator diameter (mm), bD  is the ball diameter (mm), innerD  

is the inner raceway ring diameter (mm), outerD  is the outer 

raceway ring diameter (mm),   is the ball contact angle, and 

rf  is the rotor speed in Hz. The load torque of the combination 

fault .load combiT  was found by adding the load torque of the inner 

race fault to that of the outer race fault: 

. 0

0

( ) (1 cos( )

              (1 cos( )

load combi fault s inner

fault s outer

T t T A k t

T A k t





   

   
  (7) 

where  and inner outer  represent the angular velocity of the 

inner and outer race fault, respectively.  

A Gaussian noise block was introduced into the Simulink 
model and added to the vibration signals. Its variance was 
adjusted (0.01, 0.1, 0.2, and 0.3) to create different noise 
magnitudes, allowing the mimicking of real-world conditions 
to simulate various levels of environmental disturbances and 
measurement noise, ranging from low-noise environments with 
minimal external disturbances and high-quality measurements 
to highly noisy industrial scenarios with significant external 
noise and measurement variability. This assisted in the 
evaluation of the model's robustness against varying noise 
levels. The noise equation was represented as: 

( ) ( ) ( )noisy t t N t       (8) 

where ( )noisy t is the noisy vibration signal, ( )t is the clean 

vibration signal derived from the torque equation, and ( )N t is 

the noise term modelled as Gaussian white noise with varying 
standard deviations.  

A custom dataset was created consisting of labelled images 
representing the inner race, outer race, combination (inner and 
outer race), and healthy bearings across different severities and 
noise levels. The rotational speed and load torque were kept 
constant as the variance was varied for the three operating 
conditions shown in Table I. For each of the settings, 4 
measurements of 4.5 s each were recorded for the four 
variances selected, and the first 0.5 s were cut out to leave out 
the transients. The scope block was used to visualize the data 
allowing for real-time observation of the signal characteristics. 
These data were then exported to the MATLAB workspace and 
processed to generate images, which served as input for the SE-
ResNet and hybrid models. 
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TABLE I.  OPERATING CONDITIONS FOR SIMULATED 
DATA 

No. 
Rotational speed 

[rpm] 

Load torque 

[Nm] 

Name of 

setting 

0 1500 0.7 N15_M07 

1 900 0.7 N09_M07 

2 1500 0.1 N15_M01 
 

C. Data Pre-processing and Model Training 

The original [656×875×3] images were scaled and cropped 
to 224×224×3 size to prevent overfitting and improve the 
model's ability to recognize the target objects. The simulated 
dataset had only 245 images, i.e. 12 images from the healthy 
class, 32 images from the combination faults class, 95 images 
representing the outer race faults class, and 106 representing 
images from the inner race faults class. Some of the images are 
presented in Figure 1.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 1.  Simulated bearing data images for: (a) Combination bearing fault 
(N15_M01_FV_KB02_1), (b) healthy bearing (N15_M01_FV_K001_1), (c) 
inner raceway bearing fault (N15_M01_FV_KI02_2), and (d) outer raceway 
bearing fault (N15_M01_FV_KA01_3). 

These images were then used to test the SE-ResNet model 
from [12]. The SE-ResNet was originally trained on bearing 
fault data from a Permanent Magnet Synchronous Motor 
(PMSM) and training it on induction motor faults would prove 
its ability to generalize to a related but unseen task. However, 

this model did not perform well on classifying the simulated 
test dataset. All the combination faults were misclassified as 
either inner race fault or outer race fault. The combination fault 
images were therefore divided into either outer raceway or 
inner raceway fault, depending on which fault had more 
severity. The final layers of the SE-ResNet were changed to 
capture the new conditions, therefore the classification layer 
had three classes instead of four.  

The simulated images were divided using a 70:15:15 split 
resulting in 171 for training, 37 for validation, and 37 for 
testing. The SE-ResNet model was retrained using the custom 
dataset through transfer learning and Bayesian Optimization 
was leveraged to optimize the model's performance. Bayesian 
Optimization is a powerful technique that systematically 
explores the model's hyperparameter space, including 
parameters such as learning rate, batch size, and number of 
epochs, to identify the optimal configuration.  

D. Training of SE-ResNet Model using Transfer Learning and 
Bayesian Optimization 

The SE-ResNet had performed well on training, validating 
and testing on an open-source bearing dataset, therefore 
transfer learning was used to improve the model’s 
generalization to a new but related task i.e. the pre-trained 
model was used to classify induction motor bearing faults. 
Instead of starting the learning process from scratch, 
knowledge learnt from the previous task, which was trained 
with a lot of labelled data, was leveraged. The initial 
convolutional layers responsible for low-level feature 
extraction of the SE-ResNet were frozen to retain the learned 
representations from the open-source bearing dataset, while the 
higher layers responsible for classification were retrained using 
the simulated induction motor dataset. This fine-tuning allowed 
the model to adapt to the specific characteristics of the new 
dataset. The initial hyperparameters chosen were a learning rate 
of 0.0119, momentum of 0.9122, minibatch-size of 64, L2 

regularization of 53.52 10 and 20 epochs. It became evident 
that the number of epochs was not enough for the model to 
learn all the necessary features and that the chosen learning rate 
was overfitting. An exhaustive sweep was done to help in 
choosing a suitable range for optimization. Bayesian 
Optimization strategy was then performed on MATLAB’s 
experiment manager for 30 trials to automatically search for the 
optimal hyperparameter configurations. The following ranges 
were chosen: learning rate [0.001-0.09], categorical mini batch-
size [16, 32, 64, 128], momentum [0.8–0.98], number of 
epochs [50-150], and dropout rate [1e-5 – 1e-2]. This approach 
efficiently identified the best parameters while enhancing 
model performance without extensive manual tuning. 

E. Training of Hybrid Models using Transfer Learning and 
Bayesian Optimization 

RNNs are known to have the vanishing gradient problem. 
For this study, variants of RNNs i.e. LSTM, BiLSTM, and 
GRU were used since they are effective in learning long-term 
dependencies. Each architecture combined a pre-trained SE-
ResNet initialized with weights to leverage spatial feature 
extraction capabilities, with RNN layers to model temporal 
dynamics. Only one layer of each variant was added in place of 



Engineering, Technology & Applied Science Research Vol. 15, No. 3, 2025, 23299-23308 23303  
 

www.etasr.com Sikinyi et al.: Transfer Learning Approach using Simulated Induction Motor Bearing Data … 

 

the RNN Layer block shown in Figure 2. This led to a total of 
three hybrid models i.e. SE-ResNet-LSTM, SE-ResNet-
BiLSTM, and SE-ResNet-GRU. 

 

 
Fig. 2.  Layers of the hybrid models. 

Transfer learning was applied by fine-tuning the SE-ResNet 
backbone while training the recurrent layers from scratch, 
balancing the retention of generalized visual patterns with 
adaptation to task-specific temporal sequences. Bayesian 
optimization was then employed to efficiently navigate the 
hyperparameter space, optimizing critical parameters such as 
learning rate and dropout rates [0.1 -0.5]. The range for the 
other parameters remained the same as for the SE-ResNet 
model. This approach minimized manual tuning and 
accelerated convergence by iteratively updating probabilistic 
models to prioritize hyperparameters that improve validation 
accuracy.  

III. RESULTS AND DISCUSSION 

A. Performance of the SE-ResNet Model on Simulated 
Dataset 

The acceleration signals from the simulation exhibited 
distinct patterns corresponding to healthy and faulty conditions. 
As fault severity escalated, the amplitude and frequency 
variations also increased. The addition of Gaussian white noise 
with varying variance levels effectively simulated different 
operational environments. The 245 images created were first 
used as a test dataset on the pre-trained SE-ResNet. The 
classification accuracy of the model was very poor at 40.408%. 
This was because the model was trained on a different machine 
type (PMSM) with a distinct set of bearing fault characteristics. 
Since the induction motor’s mechanical properties differ from 
those of PMSM, the fault patterns in the vibration data were 
different. The operational conditions of the test dataset did not 
also fully match the conditions of the training dataset. The pre-
trained model was therefore retrained with the new split data 
leading to an improved classification performance of 86.531%. 
However, all the combination faults were misclassified as seen 
in Figure 3. 

 
Fig. 3.  Confusion matrix of the SE-ResNet model. 

Since the primary focus was the early detection of the 
faults, the combination fault class was eliminated from the 
dataset and its images were distributed between inner raceway 
and outer raceway faults depending on which fault was more 
severe. The class reduction led to an increase in data for the 
inner raceway and outer raceway faults, allowing the model to 
learn unique characteristics. This simplified the classification 
task and improved the model's performance, leading to a more 
accurate and reliable prediction. Bayesian Optimization was 
used to train the models using a set range of hyperparameters. 
The best trial, which took 12 min, 54 s, achieved a training and 
validation accuracy of 100% as shown in Figure 4, and had the 
following hyperparameter values: learning rate: 0.0055, 
momentum: 0.8903, L2 regularization: 0.0046, epochs: 74, and 
mini-batch size: 16. This model performed well when tested 
using the remaining 15% of the custom dataset, achieving a test 
accuracy of 97.297%, demonstrating its efficacy in classifying 
bearing faults based on simulated vibration data. The confusion 
matrix in Figure 5 provides a detailed view of the classification 
performance across different fault categories, while Figures 6 
and 7 show the accuracy and loss graphs of the SE-ResNet 
after transfer learning.  

 

 
Fig. 4.  Confusion matrices of (a) training and (b) validation data of the 
retrained SE-ResNet model. 
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Fig. 5.  Confusion matrix for the test dataset of a retrained SE-ResNet 
model. 

 
Fig. 6.  Training (blue) and validation (black) accuracy graph for the SE-
ResNet after transfer learning. 

 
Fig. 7.  Training (blue) and validation (black) accuracy graph for the SE-
ResNet after transfer learning. 

B. Performance of the SE-ResNet-LSTM Model on the 
Simulated Dataset 

The SE-ResNet-LSTM model combines the deep feature 
extraction capabilities of the SE-ResNet with the temporal 
modeling power of the LSTM network. The motivation behind 
this architecture is to leverage SE-ResNet for spatial feature 
extraction from vibration scalograms while utilizing LSTM 
layers to capture temporal dependencies present in the data. 
With a learning rate of 0.0011, momentum of 0.9703, L2-
regularization of 0.0027, 138 epochs, minibatch-size of 128, 
and a dropout probability of 0.1, the model achieved a training 
accuracy of 99.2188% and a validation accuracy of 94.5946%. 
This took a total of 18 min and 22 s. Figures 8 and 9 show the 
accuracy and loss graphs. 

 

 
Fig. 8.  Training (blue) and validation (black) accuracy graph for the SE-
ResNet-LSTM after transfer learning. 

 
Fig. 9.  Training (blue) and validation (black) accuracy graph for the SE-
ResNet-LSTM after transfer learning. 

The training accuracy, as seen in the confusion matrix in 
Figure 10(a), dropped from 100% for SE-ResNet to 99.22% for 
SE-ResNet-LSTM, while the validation accuracy decreased 
more significantly to 94.59% as seen in Figure 10(b). This 
suggests that the LSTM layer might not have effectively 
captured useful temporal patterns from the simulated dataset, 
potentially indicating a lack of strong temporal dependencies in 
the simulated vibration signals. Additionally, the training time 
increased due to the recurrent nature of LSTM, leading to 
higher computational costs. The test accuracy remained the 
same as the base SE-ResNet model at 97.297%, as shown by 
the confusion matrix in Figure 10(c). 

 

 
Fig. 10.  Confusion matrices for (a) training, (b) validation, and (c) test 
datasets of the retrained SE-ResNet-LSTM model. 
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C. Performance of the SE-ResNet-GRU Model on the 
Simulated Dataset 

The SE-ResNet-GRU model demonstrated a slightly 
improved training accuracy of 99.61% over the SE-ResNet-
LSTM (99.22%), with increased memory requirements and 
training time of 37 min 33 s, because the minibatch-size of the 
best performing experiment was small at only 16 as compared 
to the LSTM's 128. The other parameters were: learning rate 
0.0559, momentum 0.9439, L2-regularization 0.0003, 100 
epochs, and a dropout probability of 0.5. The model achieved a 
validation accuracy of 94.5946%, the same as that of SE-
ResNet-LSTM. 

Similarly, the test accuracy on the simulated dataset was the 
same to the baseline SE-ResNet model's at 97.297%, further 
supporting the hypothesis that the simulated dataset lacks 
strong temporal dependencies that would justify the inclusion 
of recurrent layers. Figures 11 and 12 show the training and 
validation accuracy and loss graphs, respectively. 

 

 
Fig. 11.  Training (blue) and validation (black) accuracy graph for the SE-
ResNet-GRU after transfer learning. 

 

 
Fig. 12.  Training (blue) and validation (black) accuracy graph for the SE-
ResNet-GRU after transfer learning. 

Despite the lower accuracy compared to pure SE-ResNet, 
the SE-ResNet-GRU model exhibited slightly better 
performance than the SE-ResNet-LSTM, suggesting that 
GRU’s simplified gating mechanism helped mitigate some of 
the overfitting or ineffective learning observed with LSTM. 
However, the overall performance difference remained 
marginal. Figure 13 shows the confusion matrices of the 
training, validation, and test datasets. 

D. Performance of the SE-ResNet-BiLSTM Model on the 
Simulated Dataset 

The SE-ResNet-BiLSTM was also trained, validated, and 
tested on the simulated data. A training accuracy of 100% and 
validation accuracy of 94.5946% were achieved under the 
following hyperparameters: learning rate 0.0439, momentum 
0.8449, L2 regularization 0.0045, 97 epochs, dropout 

probability 0.5, and a mini-batch size of 16. This performance 
was achieved within 36 min 42 s. Figure 16 shows the 
confusion matrix of the split dataset, whereas Figures 14 and 
15 show the accuracy and loss graphs of the SE-ResNet-
BiLSTM model. The test accuracy mirrored the other models at 
97.297%. 

 

 
Fig. 13.  Confusion matrices for (a) training, (b) validation, and (c) test 
datasets of the retrained SE-ResNet-GRU model. 

 

 
Fig. 14.  Training (blue) and validation (black) accuracy graph for the SE-
ResNet- BiLSTM after transfer learning. 
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Fig. 15.  Training (blue) and validation (black) accuracy graph for the SE-
ResNet- BiLSTM after transfer learning. 

 
Fig. 16.  Confusion matrices for (a) training, (b) validation, and (c) test 
datasets of the retrained SE-ResNet- BiLSTM model. 

E. Performance of the SE-ResNet and Hybrid Modesl on the 
Open Source Dataset 

The SE-ResNet and Hybrid Models had earlier been 
trained, validated, and tested using an open-source dataset [12]. 
This dataset was made up of healthy and faulty bearings, of 
which the faulty bearings were from both artificial damages 
and accelerated lifetime tests. Results showed that adding the 
RNN variants led to an improvement in performance. Table II 
shows the results obtained from training, validating, and testing 
the various models using the open-source dataset. However, 
when using simulated data, the addition of RNNs did not 
improve the performance of the SE-ResNet model and only the 
computational cost increased due to the increased complexity. 
The lack of improvement in accuracy suggests that the 
temporal features may not have been sufficiently different or 
relevant for the simulated data. It is evident that the additional 
complexity is not justified in the case of the simulated dataset. 

TABLE II.  PERFORMANCE METRICS FOR SE-ResNet ON 
THE OPEN SOURCE DATASET 

Model 
Training 

accuracy (%) 

Validation 

accuracy (%) 

Testing 

accuracy (%) 

SE-ResNet 98.44 99.48 99.48 
SE-ResNet-LSTM 100 99.74 99.74 
SE-ResNet-GRU 100 100 99.74 

SE-ResNet-BiLSTM 100 100 99.47 
 

F. Performance Metrics of SE-ResNet and Hybrid Models 

Precision, recall, and F1-score were also computed to 
evaluate the performance of the models. The results are shown 
in Tables III - VI. The high precision values indicate that the 
models have a strong ability to minimize false positives, 
accurately predicting true faults with minimal error. The SE-
ResNet and SE-ResNet-GRU had the highest precision at 
0.9833. This is shown in Tables II and IV. This value is very 
important in bearing fault diagnosis since the desired model 
should minimize false positives hence false alarms. 

The recall values demonstrate the models’ effectiveness in 
capturing almost all actual bearing faults thus minimizing false 
negatives. The SE-ResNet-BiLSTM had the highest recall 
value of 0.9825 as seen in Table V. The high F1-scores 
obtained in this study highlights the models’ strong 
performance in classifying bearing faults, especially the SE-
ResNet-GRU at 0.9809. The SE-ResNet-LSTM had the worst 
performance across all metrics compared to the other models. 

Since the hybrid models increased the computational cost, 
the marginal improvement in certain metrics is not merited. 
The SE-ResNet is therefore considered to be the best option 
both in terms of accuracy and computational efficiency. The 
results demonstrate that the SE-ResNet model not only 
classifies faults with high accuracy but also maintains robust 
detection across different fault categories, ensuring that both 
precision and recall are well-balanced for practical predictive 
maintenance applications. 

TABLE III.  PERFORMANCE METRICS FOR SE-ResNet 

Class Precision Recall F1-score 

Healthy 1.0000 1.0000 1.0000 
Inner Race 0.9500 1.0000 0.9744 
Outer Race 1.0000 0.9375 0.9677 

Average 0.9833 0.9792 0.9807 

TABLE IV.  PERFORMANCE METRICS FOR SE-ResNet-LSTM 

Class Precision Recall F1-score 

Healthy 1.0000 0.5000 0.6667 

Inner Race 1.0000 1.0000 1.0000 
Outer Race 0.9412 1.0000 0.9697 

Average 0.9804 0.8333 0.8788 

TABLE V.  PERFORMANCE METRICS FOR SE-ResNet-GRU 

Class Precision Recall F1-score 

Healthy 1.0000 1.0000 1.0000 
Inner Race 0.9500 1.0000 0.9744 
Outer Race 1.0000 0.9375 0.9677 

Average 0.9833 0.9792 0.9807 
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TABLE VI.  PERFORMANCE METRICS FOR SE-ResNet-
BiLSTM 

Class Precision Recall F1-score 

Healthy 1.0000 1.0000 1.0000 
Inner Race 1.0000 0.9474 0.9730 
Outer Race 0.9412 1.0000 0.9697 

Average 0.9804 0.9825 0.9809 
 

G. Performance Analysis 

The pre-trained SE-ResNet achieved a test accuracy of 
97.297% on the simulated data, demonstrating its ability to 
generalize to a different dataset. Similarly, the hybrid models, 
SE-ResNet-LSTM, SE-ResNet-GRU, and SE-ResNet-
BiLSTM, maintained a test accuracy of 97.297% and did not 
show significant improvements on the other performance 
metrics. However, when using the open-source dataset, the 
hybrid models performed better than the SE-ResNet achieving 
a higher accuracy. Some of the reasons for this performance 
are: 

 Domain Shift: The primary reason for the lack of 
improvement is likely the domain shift between the open-
source dataset (real-world) and the simulated data. While 
the pre-trained SE-ResNet learnt robust features from real-
world data, these features may not be optimally aligned 
with the characteristics of simulated signals. Simulated data 
often lacks the noise, variability, and complexity of real-
world measurements. 

 Simplicity of Simulated Data: Simulated data, while useful 
for controlled experiments, may lack the complex temporal 
dependencies present in real-world signals. The temporal 
patterns in simulated data might be simpler or more 
deterministic, making the RNN layers redundant or 
ineffective. 

 Feature Saturation: The pre-trained SE-ResNet may have 
already extracted the most salient features from the 
simulated data. In this case, the RNN layers might not be 
able to learn additional relevant temporal patterns, leading 
to overfitting or negligible improvements. 

 Lack of Real-World Noise: Real-world noise and variations 
present within the open-source dataset may have created a 
more robust feature extractor. The simulated data may be 
too clean, and the RNN portions of the model may be trying 
to find patterns that do not exist. 

IV. CONCLUSION 

This study presents a comprehensive approach to bearing 
fault detection in induction motors by leveraging simulated 
data, transfer learning, and Bayesian Optimization. By 
modeling bearing faults of varying severities using torque-
based equations in MATLAB Simulink, and deriving 
acceleration as the vibration signal, a robust dataset was 
generated under different noise conditions. This method of 
modelling replicated real-world vibration physics more 
accurately, unlike prior works that relied on simplified 
frequency-domain simulations [21]. The transformation of 
these vibration signals into time-frequency domain images 

facilitated effective feature extraction by the SE-ResNet and 
the hybrid models.  

Transfer learning, utilizing a pre-trained SE-ResNet 
originally developed for PMSMs, was employed to adapt the 
models to the simulated induction motor dataset. This cross-
domain transfer learning demonstrated the versatility of the 
designed pre-trained model. Bayesian Optimization further 
enhanced the model by fine-tuning hyperparameters, resulting 
in a high fault classification accuracy of 97.297% with limited 
data. This result was higher than the 94% test accuracy 
achieved in [22], where the authors trained a one-dimensional 
CNN multiscale attention model using simulated bearing 
vibration signals. 

The inclusion of mathematical modeling and detailed 
simulation procedures adds depth to the methodology, 
demonstrating the viability and effectiveness of simulation-
based approaches in addressing data scarcity challenges in fault 
diagnosis. While a pre-trained SE-ResNet effectively 
generalized to the simulated induction motor bearing data, the 
integration of RNN layers did not yield significant 
improvements. The domain shift between real-world and 
simulated data, the simplicity of simulated signals, and 
potential overfitting were likely contributing factors. This 
research brings out the importance of model selection and its 
implications for efficient deployment in resource-constrained 
industrial environments. 

The proposed method demonstrates high accuracy in 
simulated environments, offering a scalable and reliable 
solution for predictive maintenance, particularly in industrial 
environments where real-world fault data is limited. However, 
several avenues for future work remain, such as expanding the 
range of fault types, exploring real-time implementation 
strategies, incorporating more complex noise models, such as 
non-Gaussian noise to better simulate real-world conditions, 
and hybrid modeling approaches such as combining 
simulation-based data with limited real-world data.  

This research contributes to the advancement of fault 
diagnosis techniques, providing a foundation for more resilient 
and efficient predictive maintenance systems in industrial 
applications. 
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