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ABSTRACT 

Accurate forecasting of wind energy production is essential for the stable integration of renewable energy 

sources into power grids, especially given the inherent variability of wind conditions. This study evaluates 

the effectiveness of Transformer-based models for improving wind energy forecasting accuracy, compared 

to traditional methods such as Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM), 

and Gated Recurrent Units (GRUs). Unlike the conventional sequential models, the Transformer models 

leverage an advanced attention mechanism, which processes all time steps simultaneously rather than 

sequentially, thereby efficiently capturing complex, long-term dependencies within the data. To conduct 

this analysis, we utilized a dataset collected from an operational wind farm located in Tetouan, northern 

Morocco, covering the period from 2019 to 2020. The experimental results show that the Transformer 

model consistently outperformed the traditional methods, achieving Mean Squared Error (MSE) of 0.275, 

0.234, and 0.221, and Mean Absolute Error (MAE) of 0.305, 0.296, and 0.284 for daily, weekly, and 

monthly forecasting horizons, respectively. Specifically, the Transformer model achieved approximately a 

10% reduction in Mean Absolute Percentage Error (MAPE) compared to the LSTM model. These findings 

demonstrate the substantial advantage of Transformer-based approaches in wind energy forecasting and 

underline their potential to significantly enhance the reliability of renewable energy integration into 

modern power grids. 

Keywords-ML; transformer-based models; RNN; LSTM; GRU; wind power forecast; wind energy 

I. INTRODUCTION  

Climate change is driving a major transformation in the 
global energy sector, with an urgent need to accelerate the 
adoption of renewable energy. In this context, wind energy 
plays a central role due to its widespread availability, relatively 
low maintenance costs, and absence of pollutant emissions [1, 
2]. This transition aims not only to protect the environment but 
also to meet the growing demand for clean and sustainable 
energy. Among the renewable energy sources experiencing the 
strongest growth in the 21st century, wind energy stands out 
particularly for its integration potential into modern energy 
systems [3, 4]. However, this integration faces a significant 
challenge: the natural variability of wind, which considerably 
complicates electricity production forecasting and optimal 
management of electrical grids [5]. Indeed, the intermittency of 
wind resources necessitates reliable forecasting to ensure grid 
stability [6]. For instance, irregular wind production can create 
imbalances between electricity supply and demand, leading to 
disruptions in the network and even power outages. Forecasting 
complexity is further exacerbated by the influence of multiple 
meteorological parameters such as atmospheric pressure, 
temperature, and humidity [7, 8]. Accurate forecasts are 
therefore essential to effectively balance production and 
consumption and strengthen the stability of energy systems [9]. 

Currently, wind energy forecasting approaches can be 
primarily classified into three categories: physical models, 
statistical models, and Artificial Intelligence (AI)-based models 
[10-12]. Physical models, based on atmospheric laws, are 
suitable for long-term forecasts but involve high computational 
costs and require continuous data collection, limiting their real-
time application [13, 14]. Statistical models, leveraging 
historical correlations between wind speed and power 
generation, are effective in short-term forecasting but remain 
vulnerable to unpredictable meteorological fluctuations [15-
17]. 

Recent advances in AI have significantly transformed 
forecasting methods, providing robust alternatives to traditional 
approaches [18]. For example, models such as XGBoost [19], 
simultaneously optimize prediction speed and accuracy. The 

Extreme Learning Machine (ELM), valued for its simplicity, is 
particularly effective in short-term forecasting [20, 21]. 
Artificial Neural Networks (ANNs), including Deep Neural 
Networks (DNNs), also offer considerable flexibility in 
modeling nonlinear relationships in wind data [22, 23]. 
Similarly, Recurrent Neural Networks (RNNs), particularly 
modern architectures like Gated Recurrent Units (GRUs) and 
Long Short-Term Memory (LSTM), effectively capture 
complex temporal dependencies for short-term forecasts [24-
29]. 

Despite these advancements, precisely managing temporal 
variability in forecasting remains a major challenge [30, 31], 
which is the research gap targeted by this study: exploring the 
application of advanced Transformer-based models, which 
remain relatively unexplored in this specific context, to 
significantly improve wind energy forecasting accuracy. The 
originality of this study specifically lies in employing 
Transformer models, renowned for their exceptional capability 
in managing complex and lengthy sequences, yet still 
underutilized in wind energy forecasting. These models are 
applied to an actual operational wind farm, ensuring practical 
relevance and transferability of the results obtained. 

II. WIND DATASET COLLECTION AND 

PROCESSING  

The wind data used in this research were obtained from the 
Tetouan wind farm, located in northern Morocco near the city 
of Tetouan. Situated on the scenic hill of Tetouan, this wind 
farm includes 40 turbines strategically positioned to optimize 
the region’s abundant wind resources. The precise geographical 
coordinates of the farm are 35°35'54.4"N and 5°34'38.2"W. 
The Tetouan wind farm is distinguished by its technical 
attributes as well as its beneficial environmental and economic 
impacts due to the favorable wind conditions in this coastal 
area. The strategic arrangement of the turbines along the ridge 
optimizes energy output while reducing environmental impact, 
demonstrating the farm’s commitment to sustainable energy 
practices. 

Between 2019 and 2020, comprehensive measurements of 
wind speed (m/s), wind direction (degrees), and power output 
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(W) were recorded at 10-min intervals. This data collection was 
made possible through cup anemometers and mechanical wind 
vanes installed at a height of 80 m, allowing for the capture of 
wind variations at an optimal altitude for energy production. 
These instruments were specifically chosen for their robustness 
and precision, ensuring reliable measurements despite the 
region's variable weather conditions. The dataset includes 
105,120 data points for each wind parameter, providing an 
extensive view of wind conditions over a prolonged period. 
The data collected from the 40 turbines were meticulously 
assembled for model training and evaluation. This 
comprehensive information is essential for evaluating wind 
energy generation in the area during the designated period, 
contributing to a better understanding of wind variations and 
their impact on energy production. 

 

 
Fig. 1.  Monthly wind speed of the 40 Tetouan wind turbines. 

 

Fig. 2.  Monthly wind direction of the 40 Tetouan wind turbines. 

Figures 1 and 2 illustrate the monthly variation in wind 
speed and direction. These parameters exhibit significant 
fluctuations from month to month, reflecting changing climate 
conditions. The variations in wind speed and direction are 
influenced by various atmospheric factors, including 
temperature differentials, pressure systems, and local 
geographical features. To ensure the accuracy of the results, the 
data underwent a cleaning process to remove outliers.  

A. Data Normalization and Cleaning 

To adapt to the dynamic nature of wind power production, 
several data preprocessing steps were implemented to optimize 
model training, accelerate convergence speed, and enhance 
prediction accuracy. These optimizations aim to enable the 
models to respond effectively to variations in production 
patterns while minimizing the impact of abnormal data on 
forecast precision. 

1) Data Normalization 

Given the high variability of parameters such as energy 
production, wind speed, and direction, data normalization was 
essential to stabilize the models’ learning process and ensure 
more consistent forecasts. A normal quantile transformation 
was applied, adjusting each feature to follow a normal 
distribution. This process helped mitigate the impact of 
extreme values and disperse frequently observed values, 
thereby facilitating the identification of meaningful patterns 
within the data. Normalization was implemented using the 
widely recognized Scikit-learn library, known for its robustness 
and extensive application in Machine Learning (ML) [32]. By 
harmonizing the distribution of input data, this transformation 
not only accelerated model convergence but also improved 
overall forecast accuracy by reducing potential biases caused 
by scale differences among features. 

2) Outlier Detection and Handling 

Managing outliers was a crucial step in ensuring model 
reliability and eliminating noise that could hinder performance. 
For wind direction, values exceeding 360° were removed to 
maintain physical consistency, as this range is the natural limit 
for direction measurements. For energy production, only 
positive values were retained, as negative values typically 
indicate measurement errors or turbine malfunctions. A filter 
was applied to exclude these outliers, ensuring that only 
reliable and representative data points were used in model 
training and evaluation. Through this cleaning process, an 
overall data efficiency of 78% was achieved, guaranteeing the 
quality of the information utilized by the models. 

3) Impact of Preprocessing Steps on Model Performance 

The preprocessing steps significantly contributed to 
improving model performance. Normalization reduced the risk 
of learning biases by balancing the distribution of values, 
enabling the models to better focus on underlying relationships 
in the data without being influenced by extreme variations. 
Additionally, managing outliers enhanced forecast robustness 
by preventing measurement errors and anomalies from 
disrupting learning. This data cleaning ensured that models 
were more precise and reliable in forecasting wind energy 
production, increasing their ability to handle natural variations 
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in wind conditions. In summary, the data normalization and 
cleaning process optimized the quality of input data and 
ensured more accurate results. These preprocessing steps play a 
fundamental role in enhancing the performance of ML models 
by enabling better data utilization while minimizing the 
influence of anomalies. 

B. Training and Testing Dataset 

To avoid any potential bias during the training process, the 
pre-processed data were divided into two distinct subsets: 70% 
of the data was utilized for model training and the remaining 
30% was used for model evaluation and final prediction 
generation. This systematic approach ensures a thorough 
analysis of the models and their respective capabilities, 
allowing for an objective assessment of their effectiveness. 

III. MACHINE LEARNING-BASED ENERGY 

PREDICTION MODELS 

In wind energy forecasting, it is crucial to examine data 
pertaining to wind velocity and orientation. We evaluated 
several ML models, including RNN, LSTM, GRU, and 
Transformer-based models. We used a novel approach using 
Transformers to enhance predictive accuracy. All models were 
trained and evaluated on consistent datasets, guaranteeing 
identical data partitions and training parameters. 

A. Deep Neural Network Architecture 

The DNN used in our research is structured with an input 
layer that integrates essential data such as wind speed and 
direction. Subsequently, there are three hidden layers with 128, 
32, and 32 neurons, respectively. The output layer has a 
solitary neuron tasked with forecasting active wind energy (�). 
To maintain consistent mean and variance of inputs across 
layers and to address normalization issues, all hidden layers use 
the Scaled Exponential Linear Unit (Selu) activation function, 
whilst the output layer utilizes a linear activation function. The 
network's weights were randomly initialized from a truncated 
normal distribution centered at zero, with a width of 1/� , 
where � is the number of input units. This DNN architecture is 
adept at identifying intricate patterns in the data, making it 
particularly useful for forecasting active wind power and other 
regression-related tasks. 

B. Recurrent Neural Networks  

As mentioned above, the data for this study were collected 
every 10 minutes. Variations in wind speed, direction, and 
operating circumstances at each moment influence the 
measurements for the subsequent time period. This establishes 
temporal relationships and patterns in the data that 
conventional ML models, such as SVM, find challenging to 
capture effectively. To address these issues, we used RNNs, 
which are especially designed to process sequential input via 
the integration of feedback connections. The fundamental 
equations that regulate RNNs are: 

 Hidden State : 

 1t h t x th f w h w x b      (1) 

where th represents the hidden state at time � , �  denotes an 

activation function (like the hyperbolic tangent or ReLU), hw  

is the weight matrix for the previous hidden state, xw  is the 

weight matrix for the input, and 	 is the bias term. 

 Output : 

t y t yy w h b      (2) 

where ty  is the output at time �  and yw  and yb  are the 

weight matrix and bias for the output, respectively. 

C. Long Short-Term Memory  

LSTMs represent an enhanced iteration of RNNs, designed 
to mitigate the vanishing gradient issue often seen in 
conventional RNNs. The system comprises memory cells and 
many gating mechanisms (input gate, forget gate, and output 
gate) that facilitate the model's ability to ascertain which 
information to retain or eliminate. 

 Input Gate: 

 1t i t i t ii w x U h b       (3) 

 Forget Gate: 

1( )t f t f t ff W x U h b       (4) 

 Output Gate: 

1( )t o t o t oo W x U h b       (5) 

 Cell State : 

1 1. ( ).t t t c t c t cCt f C i Tanh W x U h b      (6) 

 Hidden State : 

( ).t t th o Tanh C     (7) 

where σ is the sigmoid function, and 
  and �  are the 
respective weight matrices. 

The use of gates allows LSTMs to retain information over 
long periods, which is essential for time-dependent data where 
past events can impact future predictions. Thus, LSTMs are 
particularly suited for predicting wind power. 

D. Gated Recurrent Units  

GRUs are an optimized variant of LSTMs that consolidate 
certain elements of the input and forget gates into a single 
update gate. This reduction lowers the model's complexity 
while yet proficiently capturing long-term interdependence. 

 Update Gate: 

1( )t z t z t zz W x U h b       (8) 

 Reset Gate: 

1( )t r t r t rr W x U h b       (9) 



Engineering, Technology & Applied Science Research Vol. 15, No. 3, 2025, 23268-23276 23272  
 

www.etasr.com Bousla et al.: Modeling Wind Energy Production Forecasting using Machine Learning: An In-depth … 

 

 Cell State: 

�
1( ( ) )t h t h t t hh Tanh W x U r h b     (10) 

 Hidden State: 

�
1( )1 . .t t t t th z h z h      (11) 

where tz  and tr  are the update and reset gates, respectively. 

GRUs are often faster to train than LSTMs due to their 
simpler architecture, while still achieving comparable 
performance in time series forecasting tasks, making them 
useful for wind power forecasting. 

E. Transformer-Based Models 

With the introduction of attention modules, Transformer-
based models have demonstrated remarkable performance in 
Natural Language Processing (NLP) [33]. Researchers have 
begun to integrate self-attention into various time series 
architectures to further enhance forecasting performance. This 
has led to the emergence of Transformers, which have proven 
effective in time series forecasting, including energy 
forecasting [34]. In our study, we adapted the Informer method 
to assess the impact of Transformers on wind data forecasting. 
The fundamental equation of the attention mechanism in 
Transformers is given by: 

( ) ( ), ,
T

k

Attention Q K V softmax V
QK

d
  (12) 

where � , 
 , and �  represent the query, key, and value 

matrices, respectively, and kd is the dimension of the keys. 

This approach allows for capturing long-term relationships in 
time series data more efficiently than by the previous methods. 
By combining these different approaches, our goal is to 
optimize the accuracy of predictions concerning the energy 
produced by wind, while accounting for the dynamic variations 
in wind and environmental conditions. 

In summary, each model adopts a specific approach to 
processing temporal data, with distinct strengths and 
limitations. RNNs and their variants (LSTM and GRU) excel at 
capturing short-term dependencies due to their sequential 
structure but often face challenges with long-term 
dependencies, especially due to the vanishing gradient 
problem. LSTM and GRU models partially address this 
limitation with gating mechanisms that allow information to be 
retained over longer sequences. In contrast, Transformers stand 
out by incorporating an attention mechanism capable of 
capturing long-term dependencies simultaneously and in 
parallel, making their architecture particularly suitable for 
predictions in complex time series. 

IV. EVALUATION METRICS 

To evaluate the accuracy and robustness of the considered 
forecasting models in the context of wind energy prediction, 
three performance indicators were used: Mean Squared Error 
(MSE), Mean Absolute Error (MAE), and Mean Absolute 

Percentage Error (MAPE). These metrics provide a 
comprehensive overview of each model’s performance, 
highlighting their specific strengths and limitations. To ensure 
consistent and comparable results, the calculations were 
conducted in a standardized hardware environment, using a 
DELL XPS 15 9520 equipped with a 12th-generation Intel 
Core i7-12700H processor, featuring 14 cores with a maximum 
frequency of 4.7 GHz, 16 GB of DDR5 RAM running at 4800 
MHz, an NVIDIA GeForce RTX 3050 Ti graphics card with 4 
GB of GDDR6 memory, and a 1 TB M.2 PCIe NVMe SSD. 
The reported training time excludes data loading time, as data 
were directly read from the SSD to optimize processing 
efficiency. This standardized hardware configuration ensures a 
rigorous evaluation of the models in terms of accuracy and 
performance. 

Each of these metrics plays an essential role in evaluating 
the performance of forecasting models, and their combined use 
provides a comprehensive and nuanced view of the accuracy of 
forecasts in the context of wind data analysis. 

A. Mean Absolute Error (MAE) 

The MAE is a particularly useful Key Performance 
Indicator (KPI) for assessing the accuracy of forecasts in the 
field of data modeling. This metric is highly valued for its 
simplicity and ease of interpretation, as it directly expresses the 
deviation between forecasts and actual observations without 
considering the sign of the errors. The MAE is calculated by: 

 
1 n

i iMAE y f x
n

     (13) 

where yi represents the actual energy production value, while 
f(xi) denotes the predicted value by the model for the input xi. A 
low MAE indicates that the forecasts are very close to the 
actual values, which is desirable for any forecasting 
application. Furthermore, the MAE is particularly 
advantageous in contexts where errors are evenly distributed, 
as it does not favor larger errors over smaller ones, unlike other 
metrics such as MSE. 

B. Mean Squared Error (MSE) 

The MSE is another crucial metric used to evaluate forecast 
accuracy. Unlike the MAE, which measures the average of 
absolute errors, the MSE focuses on the average of the squared 
errors between the actual and predicted values. This approach 
amplifies the impact of large errors, meaning that the MSE is 
sensitive to significant fluctuations in the data. In fact, larger 
errors are assigned greater weight, which can be beneficial in 
scenarios where minimizing major errors is essential [35]. The 
MSE is defined by: 

  
21 n

i iMSE y f x
n

     (14) 

A low MSE suggests that the model has small errors, which 
is a positive indicator of its performance. Due to its sensitivity 
to large errors, the MSE is often used in contexts where 
precision is paramount and where significant deviations can 
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have serious consequences, such as in forecasting wind energy 
production. 

C. Mean Absolute Percentage Error (MAPE) 

MAPE is a widely recognized and used metric for assessing 
forecast accuracy. The MAPE calculates the average of 
absolute errors expressed as a percentage, thus normalizing the 
errors relative to the actual values. This makes this metric 
particularly useful when comparing forecasts across different 
datasets or time periods, as it provides a relative measure of 
accuracy. The MAPE formula is: 

 1
100

n
i i

i

y f x
MAPE

n y


    (15) 

where yi represents the measured actual power energy, while 
f(xi) corresponds to the power energy predicted by the model. 
In terms of interpretation, a model displaying a MAPE of less 
than 10% is generally considered highly accurate. A MAPE 
between 10% and 20% indicates a good forecasting model, 
while a MAPE of 20% to 30% is regarded as reasonable. A 
MAPE greater than 50% suggests that the model is inaccurate 
and requires improvements. 

V. RESULTS AND DISCUSSION 

As shown in Table I, the proposed model consistently 
outperformed the sequential approaches of RNN, LSTM, and 

GRU, with particularly significant improvements observed in 
weekly and monthly forecasts. Specifically, the Transformer 
model achieved a MAPE approximately 10% lower than that of 
the LSTM, demonstrating its enhanced ability to adapt to wind 
variability and to extract relevant temporal patterns over 
extended horizons. Visual comparisons of model performance 
are presented in Figures 3-5.  

TABLE I.  EVALUATION OF FORECASTING ACCURACY 
AND COMPUTATIONAL EFFICIENCY AT DAILY, WEEKLY, 

AND MONTHLY SCALES 

Method MAE MSE MAPE Time/epoch (s) 

Daily 

RNN 0.462 0.418 3.659 325 ± 10 

LSTM 0.879 0.997 1.021 590 ± 10 

GRU 0.354 0.308 2.952 650 ± 20 

Informer 0.305 0.275 2.877 1510 ± 5 

Weekly 

RNN 0.421 0.381 4.167 321.5 ± 20 

LSTM 0.7762 0.950 1.105 550 ± 10 

GRU 0.303 0.247 2.866 580 ± 10 

Informer 0.296 0.234 2.418 910 ± 30 

Monthly 

RNN 0.404 0.345 4.0045 300 ± 10 

LSTM 0.722 0.957 1.010 530 ± 7 

GRU 0.296 0.233 2.854 500 ± 100 

Informer 0.284 0.221 2.17 900 ± 20 

 

 

 
Fig. 3.  Comparative analysis of the daily accumulated energy predictions. 
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Fig. 4.  Comparative analysis of the weekly accumulated energy predictions. 

 

Fig. 5.  Comparative analysis of the monthly accumulated energy predictions. 

The analysis of daily forecasts (Figure 3) reveals that while 
all models yield satisfactory results, the proposed model stands 
out by significantly reducing absolute error. The sequential 
models tend to over-smooth short-term fluctuations, limiting 
their responsiveness to sudden changes in wind patterns. In 
contrast, the transformer model dynamically adjusts its 
temporal weightings through its attention mechanism, allowing 
it to respond more effectively to rapid meteorological changes. 

The weekly forecasts (Figure 4) confirm this trend and 
further highlight the transformer model's robustness under 
operational constraints. A specific incident around week 20, 
where the grid operator temporarily curtailed wind production, 
caused notable prediction errors for the sequential models. The 
Informer, however, successfully mitigated this disturbance 
thanks to its global learning capacity, enabling it to anticipate 
and adapt to unexpected fluctuations. This adaptability makes it 
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particularly well-suited for reliable renewable energy 
integration into the power grid. 

Regarding the monthly forecasts (Figure 5), the Informer 
demonstrates a greater ability to capture seasonal trends, 
outperforming sequential models that struggle to represent 
long-term dependencies. The notably lower MSE and MAE 
values achieved by the Informer confirm its capacity to track 
meteorological cycles, which is a key advantage for long-term 
energy planning and effective management of wind power 
intermittency. 

Overall, these findings emphasize the Informer’s ability to 
weigh and prioritize relevant temporal features, allowing it to 
deliver accurate and stable forecasts across all time scales, even 
under dynamic and unstable environmental conditions. Its 
resilience to both operational and weather-related disruptions 
positions it as a strategic tool for energy system optimization 
and long-term planning. 

VI. CONCLUSION 

In this paper, we introduced a novel and comprehensive 
dataset specifically tailored for wind energy production 
forecasting, encompassing essential parameters: date, wind 
speed, wind direction, and energy output. Utilizing this 
extensive dataset, we conducted a rigorous comparative 
analysis of advanced deep learning models, namely RNN, 
LSTM, GRU, and Transformer-based, to assess their predictive 
capabilities within a realistic operational context. 

The acquired results highlight significant accuracy 
improvements achieved by the Transformer-based model, with 
performance gains ranging from 5% to 20% over LSTM and 
GRU models, along with improved computational efficiency 
[36-38]. The superior performance of the proposed model 
primarily stems from its attention mechanism, which enables 
simultaneous analysis of all time steps, effectively capturing 
intricate long-term temporal patterns that traditional sequential 
models often struggle with. The findings confirm and build 
upon the existing literature by demonstrating that GRU models 
exhibit comparatively higher error rates (MAE and MAPE) for 
wind speed [39, 40] and LSTM models excel at producing 
precise prediction intervals suitable for high-precision 
forecasting tasks [41, 42]. 

A key contribution of this study lies in demonstrating, 
through practical application, the tangible advantages and 
predictive superiority of Transformer-based methods, filling an 
important research gap. The implications of these findings 
extend directly to practical wind energy management, 
facilitating better integration of renewable energy sources into 
existing power grids, optimized operational decision-making, 
and potentially significant reductions in energy production 
costs. 

Despite the promising results, our study recognizes the 
computational intensity of Transformer models as a notable 
limitation. Future research directions should thus focus on 
developing optimized Transformer variants or hybrid 
approaches capable of preserving high predictive accuracy 
while reducing computational demand. Such advancements 
will further enhance the practicality and scalability of these 

forecasting models, driving forward the development of robust, 
cost-efficient, and environmentally sustainable wind energy 
solutions essential to global climate change mitigation efforts. 
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